TABLE OF CONTENTS

Table of Figures .. iii

Tables ... iv

Abbreviations .. v

Conversions ... v

Executive Summary ... 1

SECTION 1 Background and Introduction ... 3

SECTION 2 Overview of Seawater Intrusion ... 5

 - Groundwater Pumping and Seawater Intrusion ... 7
 - Indicators of Seawater Intrusion ... 8
 - Cation/Anion Ratios .. 9
 - Increasing Chloride Concentrations ... 14
 - Sodium/Chloride Ratios .. 14
 - Chloride-Bicarbonate Ratios ... 17
 - Electric Induction Logs .. 17
 - Other Indicators ... 18

SECTION 3 Seawater Intrusion in the Seaside Groundwater Basin 19

 - Analysis Approach ... 19
 - Cation/Anion ratios ... 19
 - Second Quarter Water Year 2010 (January-March 2010) 20
 - Fourth Quarter Water Year 2010 (July-August 2010) 21
 - Chloride Concentrations ... 33
 - Trends ... 33
 - Chloride Concentration Maps ... 35
 - Sodium/Chloride Ratios ... 35
 - Electric Induction Logs ... 39
 - Groundwater Levels .. 43
 - Trends ... 43
 - Groundwater Elevation Maps .. 44
 - Pumping ... 51
 - Protective Groundwater Elevations ... 53
SECTION 4 Conclusions ... 57

SECTION 5 Recommendations ... 61
 Semi-Annual Water Quality Sampling in Well SBWM-4 61
 Continue to Analyze and Report on Water Quality Annually 61
 Refine Preliminary Shallow Protective Groundwater Elevation 61

SECTION 6 References .. 63

Appendix A: Piper Diagrams for Individual Wells
Appendix B: Chloride and Sodium/Chloride Ratio Graphs
TABLE OF FIGURES

Figure 1: Seawater Wedge in a Simple Coastal Aquifer (from Barlow, 2003) 5
Figure 2: Seawater Wedge in a Layered Coastal Aquifer (from Barlow, 2003) 6
Figure 3: Interface Migration in Response to Groundwater Pumping (from Barlow, 2003) .. 8
Figure 4: Piper Diagram for Groundwater in Pajaro Valley (Data source: PVWMA) .. 11
Figure 5: Piper Diagram for Groundwater in Salinas Valley (Source: MCWRA) ... 12
Figure 6: Stiff Diagrams from Salinas Valley Wells without Seawater Intrusion (Source: MWCRA) ... 13
Figure 7: Stiff Diagrams from Salinas Valley Wells with Seawater Intrusion (Source: MWCRA) ... 13
Figure 8: Historical Chloride Concentrations and Sodium/Chloride Ratios for a Well in Salinas Valley Showing Incipient Intrusion (Source: MCWRA) ... 15
Figure 9: Historical Chloride Concentrations and Sodium/Chloride Ratios for a Well in Pajaro Valley Showing Incipient Intrusion (Data source: PVWMA) ... 16
Figure 10: Wells Used for Current Seawater Intrusion Analyses 22
Figure 11: Piper Diagram for Seaside Groundwater Basin Monitoring Wells, 2nd Quarter Water Year 2010 (January-March 2010) .. 23
Figure 12: Stiff Diagrams for MSC, Fort Ord 9, and Fort Ord 10 Wells (Data source: Watermaster) .. 24
Figure 13: Stiff Diagrams for PCA West, PCA East, and Ord Terrace Wells (Data source: Watermaster) .. 25
Figure 14: Stiff Diagrams for Watermaster Monitoring Wells 1 - 3 (Data source: Watermaster) .. 26
Figure 15: Stiff Diagrams for Watermaster Monitoring Wells 4 - 5 27
Figure 16: Piper Diagram for Seaside Groundwater Basin Monitoring Wells, 4th Quarter Water Year 2010 (July-August 2010) (Data source: Watermaster) .. 28
Figure 17: Piper Diagram for Seaside Groundwater Basin Production Wells, 4th Quarter Water Year 2010 (July-August 2010) (Data source: Watermaster) .. 29
Figure 18: Stiff Diagrams for Southern Subbasin Production Wells 30
Figure 19: Stiff Diagrams for Northern Subbasin Production Wells 31
Figure 20: Stiff Diagrams for Northern Subbasin Production Wells 32
Figure 21: Historical Chloride and Sodium/Chloride Molar Ratios, Shallow PCA West Well .. 34
Figure 22: Shallow Zone Chloride Concentration Map – 4th Quarter WY 2010 .. 37
Figure 23: Deep Zone Chloride Concentration Map – 4th Quarter WY 2010 .. 38
Figure 24: Sentinel Well Induction Log January 2010 ... 41
Figure 25: Sentinel Well Induction Log July 2010 ... 42
Figure 26: Example Hydrographs (Source: Watermaster) ... 46
Figure 27: Shallow Zone Water Elevation Map – 2nd Quarter WY 2009 (January 2009) .. 47
Figure 28: Deep Zone Water Elevation Map – 2nd Quarter WY 2009 (January 2009) .. 48
Figure 29: Shallow Zone Water Elevation Map – 4th Quarter WY 2009 (July/August 2009) ... 49
Figure 30: Deep Zone Water Elevation Map – 4th Quarter WY 2009 (July/August 2009) ... 50
Figure 31: Pumping Distribution for Water Years 2009 and 2010 ... 52
Figure 32: MSC Deep and Shallow Groundwater and Preliminary Protective Elevations ... 54
Figure 33: PCA West Deep and Shallow Groundwater and Preliminary Protective Elevations ... 55
Figure 34: CDM-MW4 Groundwater and Preliminary Protective Elevations ... 56
Figure 35: Sentinel Well 3 Groundwater and Preliminary Protective Elevations .. 56
Figure 36: Possible Processes Limiting Seawater Intrusion ... 60
Figure 37: Piper Diagram of SBMW-5 Shallow Well .. 21
Figure 38: Piper Diagram of SBMW-5 Deep Well ... 22

TABLES

Table 1: Summary of Preliminary Protective Elevation Monitoring Locations 53
ABBREVIATIONS

ASR..Aquifer storage and recovery
Bgs..Below Ground Surface
Ca..Calcium
CAW.......................................California American Water
Cl...Chloride
CO$_3$....................................Carbonate
FO..Fort Ord
HCO$_3$.................................Bicarbonate
K...Potassium
MCWRA.................................Monterey County Water Resources Agency
Mg..Magnesium
mg/L.....................................Milligrams per liter
MPWMD.................................Monterey Peninsula Water Management District
MSC.......................................Monterey Sand Company
Na..Sodium
PCA.......................................Pacific Cement Aggregates
PVWMA.................................Pajaro Valley Water Management Agency
SBMMP.................................Seaside Groundwater Basin Monitoring and Management Program
SO$_4$.....................................Sulfate
TAC.......................................Technical Advisory Committee
WY...Water Year

CONVERSIONS

1 acre-foot = 325,851 gallons
1 mg/L \approx 1 part per million
This page left intentionally blank
EXECUTIVE SUMMARY

This annual report addresses the potential for, and extent of, seawater intrusion in the Seaside Groundwater Basin. Continued pumping in excess of recharge and fresh water inflows, pumping depressions near the coast, and ongoing seawater intrusion in the nearby Salinas Valley all suggest that seawater intrusion could occur in the Seaside Groundwater Basin. Fortunately, no seawater intrusion is currently observed in existing monitoring wells, as demonstrated by the different tools and analyses that were used to investigate for evidence of seawater intrusion:

- Piper diagrams for groundwater samples collected from depth-discreet monitoring wells during Water Year 2010 show no changes towards seawater.

- No groundwater samples analyzed with Stiff diagrams are indicative of incipient seawater intrusion.

- Wells with chloride concentration increases over the past year are: PCA-W deep, PCA-E shallow, MSC shallow, FO-09 shallow, FO-9 deep, FO-10 deep, Sentinel Well 1 at 1,140 ft, Sentinel Well 1 at 1,390 ft, Sentinel Well 3 at 870 ft, and Sentinel Well 3 at 1,275 ft. Although the increases mentioned above do not indicate seawater intrusion, their future trends must be continued to be followed. Stiff and Piper diagrams for these wells do not indicate seawater intrusion, and it is likely that the increase is merely a localized fluctuation that is unrelated to seawater intrusion. No additional monitoring is warranted.

- Of the wells from last year’s SIAR that had increasing chloride concentrations, the deep Fort Ord 10 well is the only monitoring well that continued with an increase over the past year. Stiff and Piper diagrams for this well do not indicate seawater intrusion, and it is likely that the increase is merely a localized fluctuation that is unrelated to seawater intrusion. No additional monitoring is warranted.

- No wells display decreasing sodium/chloride ratios that would indicate seawater intrusion.
• Maps of chloride concentrations do not show chlorides increasing towards the coast.

• Although production wells have a different water quality than the monitoring wells, this is probably as a result of them being screened across both shallow and deep zones. The production well water qualities are not indicative of seawater intrusion.

• Groundwater production in the Seaside Groundwater Basin remained the same as Water Year 2009. The amount pumped, 4,547.6 acre-feet, is less than the Court-mandated operating yield of 5,600 acre-feet per year. The lower than historic pumping is a result of implementing the Court-mandated triennial reduction in an effort to bring the basin closer to hydrologic balance which is necessary to prevent seawater intrusion.

• Groundwater levels continue to be below preliminary protective elevations in all deep target monitoring wells (MSC deep, PCA-W, and Sentinel Well 3). Two of the three shallow wells’ groundwater levels are above protective elevations: PCA-W shallow and CDM-MW4. MSC shallow remains below preliminary protective elevations.

Based on the findings of this report, the following recommendations should be implemented to continue to monitor and track potential seawater intrusion.

1. **Semi-Annual Water Quality Sampling in Well SBWM-4**
 Continue to collect semi-annual samples at sentinel well SBWM-4 because chloride concentrations from a depth of 900 feet below surface remain greater than 250 mg/L.

2. **Continue to Analyze and Report on Water Quality Annually**
 Seawater intrusion is a threat, and data must be analyzed regularly to identify incipient intrusion. Maps, graphs, and analyses similar to what are found in this report should continue to be developed every year.

3. **Refine Preliminary Protective Groundwater Elevations**
 It is recommended that the preliminary protective groundwater elevation estimated during modeling (HydroMetrics LLC, 2009b) be refined using final calibrated aquifer properties from the Seaside Basin groundwater flow model. It is expected that the protective elevations will be decreased up to a few feet, which will make them more practical to meet.
SECTION 1
BACKGROUND AND INTRODUCTION

Historical and persistent low groundwater elevations caused by pumping in the Seaside Groundwater Basin have led to concerns that seawater intrusion may threaten the Basin’s groundwater resources. This report addresses the potential for, and extent of, seawater intrusion in the Seaside Groundwater Basin. The report first reviews seawater intrusion mechanisms, analyzes historical water quality data for indications of seawater intrusion in the Seaside Groundwater Basin, and finally reaches conclusions on the extent of seawater intrusion and proposes recommendations for continued monitoring.

This report fulfills part of the annual reporting requirements contained in the Seaside Groundwater Basin Adjudication (California American Water v. City of Seaside, Monterey County Superior Court, Case Number M66343). The analyses in this report were developed by HydroMetrics Water Resources Inc. of Oakland, CA, in cooperation with members of the Watermaster Technical Advisory Committee (TAC). Staff from the Monterey County Water Resources Agency (MWCRA) and Monterey Peninsula Water Management District (MPWMD) provided invaluable assistance, data, and review during the preparation of this report.

This report is the fourth in a series of Seawater Intrusion Analysis Reports (SIAR) which are produced annually by the Watermaster. It builds on the work performed in the preceding SIARs.
SECTION 2
OVERVIEW OF SEAWATER INTRUSION

Seawater intrusion is a threat to many coastal groundwater basins along the California Coast. It has been observed and documented in a number of groundwater basins in both southern and central California.

In general, groundwater in coastal basins flows from recharge areas in local highlands towards discharge areas along the coast. In most undeveloped coastal groundwater basins there is a net outflow of fresh water into the ocean. Seawater intrusion occurs when the outflow of freshwater ceases and seawater flows into the groundwater basin from the ocean.

In the simplest condition, seawater intrudes as a wedge beneath the fresh groundwater (Figure 1). This wedge shape is a result of seawater being denser than freshwater.

![Figure 1: Seawater Wedge in a Simple Coastal Aquifer (from Barlow, 2003)](image)

In more complex, layered groundwater systems, the location of the seawater/freshwater interface may vary among the different aquifers. Such a situation is illustrated in Figure 2. Figure 2 shows a series of aquifers in blue, which transmit water easily. The aquifers are separated by a series of tan...
aquitards, which transmit water relatively slowly. Each aquifer has a unique rate of outflow to the ocean, and therefore a unique location of the seawater interface. In these more complex situations, the locations of the seawater/freshwater interfaces are a complex function of the horizontal groundwater gradient in each aquifer, the aquifer hydraulic conductivities, and the vertical conductivity of the inter-layer aquitards.

Figure 2: Seawater Wedge in a Layered Coastal Aquifer (from Barlow, 2003)

Figure 2 shows that under non-pumping conditions, the seawater interface in confined units is often located farther offshore than in surficial unconfined aquifers. The fresh water in an unconfined aquifer can flow readily into the ocean, allowing the seawater interface to exist near shore. Fresh water in the
lower confined aquifers must seep out slowly through the overlying confining units. The slow seepage rates allow the fresh water to maintain pressure beneath the sea floor, pushing the seawater interface away from the coastline.

GROUNDWATER PUMPING AND SEAWATER INTRUSION

Pumping groundwater in a coastal aquifer reduces the amount of water discharging to the ocean. Sufficient pumping can eliminate ocean discharges, either locally or basin-wide, triggering seawater intrusion. The response of the seawater interface to groundwater pumping is manifested in two related ways: upconing and interface migration. Upconing refers to the ability of a pumping well to draw seawater up from below. Upconing only occurs if seawater exists directly below a pumping well. Because no seawater intrusion has been observed in the Seaside Groundwater Basin, upconing cannot occur, and only seawater interface migration will be further addressed in this report.

As mentioned earlier, groundwater pumping reduces the amount of fresh water outflow to the ocean. This allows the interface to migrate shoreward. Substantial pumping can allow the interface to move onshore, potentially impacting municipal wells, private wells, or agricultural wells. Figure 3 shows a two-dimensional cross section of how the fresh water/seawater interface may migrate in response to pumping.

As can be inferred from Figure 3, the degree of interface migration depends on the amount of water pumped from a particular aquifer, as well as the amount of leakage from overlying or underlying aquifers. Groundwater extracted from the lowest aquifer might be replaced by rainfall recharge, by seawater migrating shoreward, or by groundwater leaking from the overlying aquifer.

An additional issue that must be considered with seawater interface migration is the initial location of the seawater interface. An interface that starts far from the shore may take a considerable amount of time, often on the order of decades, to reach any production or monitoring well. Furthermore, the farther the interface is from the pumping well, the more area is available for fresh water to leak from overlying aquifers into the producing aquifer. This slows, or may completely stop, seawater intrusion in the pumped aquifer. Downward leakage, however, removes fresh water from overlying aquifers. This leakage may therefore exacerbate seawater intrusion in the overlying aquifer.
Cross-hatching shows seawater movement in response to pumping.

Figure 3: Interface Migration in Response to Groundwater Pumping
(from Barlow, 2003)

INDICATORS OF SEAWATER INTRUSION

Seawater intrusion is generally identified through chemical analyses of groundwater. Groundwater levels below or near seal level indicate an opportunity for seawater intrusion, but the actual seawater intrusion is indicated by various geochemical changes in groundwater.

No single analysis definitively identifies seawater intrusion, however by looking at various analyses we can ascertain when fresh groundwater mixes with seawater. At low chloride concentrations, it is often difficult to identify incipient seawater intrusion. This is due to the natural variation in fresh water chemistry at chloride concentrations below 1,000 milligrams per liter (mg/L) (Richter and Kreitler, 1993). Mixing trends between groundwater and seawater are more easily defined when chloride concentrations exceed 1,000 mg/L.
Common geochemical indicators of seawater intrusion are discussed, and example analyses are presented, in the following sections.

CATION/ANION RATIOS

Molar ratios of cations and anions can prove distinctive for various groundwater systems. Seawater intrusion is often indicated by graphically analyzing shifts in these molar ratios. Two common graphical techniques for these analyses are Piper diagrams and Stiff diagrams.

Piper Diagrams

Example Piper diagrams are shown for data from the Pajaro Valley and Salinas Valley in Figure 4 and Figure 5, respectively. These figures are included to demonstrate the utility of Piper diagrams, and show how they have been used in nearby basins. These figures are not provided for directly comparing data between basins; groundwater quality trends in one basin will not necessarily correlate with trends in other basins.

On these Piper diagrams, the relative abundances of individual cations and anions are plotted in the left and right triangles, respectively, and their combined distribution is plotted in the central diamond. Waters from similar or related sources will generally plot together. The mixture of two waters will generally plot along a straight line between the two end-member types within the central diamond. The trend towards seawater intrusion, however, often plots along a curved path as shown in Figure 4. The red arrows track the evolution of water chemistry from freshwater to seawater. Often only the first, upward leg of this curve is observed, because wells become too saline to use before reaching the downward leg, and sampling is usually discontinued.

Stiff Diagrams

Example Stiff diagrams from the Salinas Valley are shown in Figure 6 and Figure 7. These figures are included to demonstrate the utility of Stiff diagrams, and show how they have been used in nearby basins. On Stiff diagrams, the relative abundances of individual cations are plotted on the left side of the graph, and the relative abundances of anions are plotted on the right side of the graph. Waters with similar chemistries will have similarly shaped Stiff diagrams.
Figure 6 shows Stiff diagrams characteristic of the unintruded portions of the Salinas Valley Pressure 400-Foot Aquifer. By contrast, Figure 7 shows Stiff diagrams from the intruded portion of the Salinas Valley Pressure 400-Foot Aquifer. The significantly higher chloride levels in the intruded aquifer result in the noticeable spike at the upper right hand side of the Stiff diagrams in Figure 7. This spike is indicative of incipient seawater intrusion.

The Stiff diagrams shown on Figure 7 are from wells that have acknowledged seawater intrusion, based on multiple lines of evidence. The Stiff diagrams alone are often not sufficient to identify seawater intrusion because there is no standard for Stiff diagram shapes; the diagrams are most useful as a comparative tool, showing the evolution of water chemistry over time and space. The shape of these Stiff diagrams is considered indicative of seawater intrusion in Salinas Valley only because considerable data analyses have shown that locally, Stiff diagrams adopt this shape as seawater encroaches.

The Stiff diagrams of seawater intruded wells shown on Figure 7 show calcium concentrations greater than sodium concentrations, in spite of the fact that sodium is the dominant cation in seawater. Incipient seawater intrusion is often characterized by increasing calcium and decreasing sodium, due to cation exchange between sodium and calcium on the aquifer material. This concept is discussed further on page 14.
Figure 4: Piper Diagram for Groundwater in Pajaro Valley
(Data source: PVWMA)
Figure 5: Piper Diagram for Groundwater in Salinas Valley
(Source: MCWRA)
Figure 6: Stiff Diagrams from Salinas Valley Wells without Seawater Intrusion
(Source: MWCRA)

Figure 7: Stiff Diagrams from Salinas Valley Wells with Seawater Intrusion
(Source: MWCRA)
INCREASING CHLORIDE CONCENTRATIONS

Seawater is chloride rich, whereas bicarbonate or sulfate are the dominant anions in many groundwater systems. Steadily increasing chloride concentrations over time is the one of the most commonly used indicators of seawater intrusion. At low chloride concentrations, trends are often as important as absolute concentrations because of natural variations in groundwater chemistry. As an example, in 2004 the coastal shallow Pacific Cement Aggregates (PCA) West well had a chloride concentration of 46 mg/L, whereas the much more inland well 2701882-016, located in the Laguna Seca subarea, had a chloride concentration of 225 mg/L. The higher chloride concentration in well 2701882-016 is fairly consistent, showing no increasing trend, and is clearly not an indicator of seawater intrusion.

Example graphs showing historical chloride concentration increases indicative of seawater intrusion are shown in Figure 8 and Figure 9. Figure 8 graphs steadily increasing chloride concentrations in a shallow well in the Salinas Valley. Figure 9 graphs increasing chloride concentrations in a well in the Pajaro Valley. Both of these graphs show that the rise in chlorides is a lengthy and persistent process; chloride concentrations began to increase in the representative Salinas Valley well in 1982, and took six years before exceeding the Safe Drinking Water Act secondary drinking water standard of 250 mg/L. This long-term and relatively slow increase in chlorides suggests that while chloride concentrations are strongly indicative of seawater intrusion, it often takes time for the increasing chloride trend to be recognizable.

SODIUM/CHLORIDE RATIOS

As mentioned earlier in this report, sodium often replaces calcium on the aquifer matrix through ion exchange in advance of the seawater front. This effectively removes sodium from the water, and sodium/chloride ratios drop in advance of the seawater front. This can sometimes be used as an early indicator of seawater intrusion. Sodium/Chloride ratios can also be used to differentiate between seawater intrusion and other sources of saltwater. Jones et al. (1999) suggest that sodium/chloride ratios in advance of a seawater intrusion front will be below 0.86 (molar ratio). This distinguishes seawater intrusion from domestic waste water, which typically has sodium/chloride ratios above 1.
Figure 8: Historical Chloride Concentrations and Sodium/Chloride Ratios for a Well in Salinas Valley

Showing Incipient Intrusion

(Source: MCWRA)
Figure 9: Historical Chloride Concentrations and Sodium/Chloride Ratios for a Well in Pajaro Valley
Showing Incipient Intrusion (Data source: PVWMA)
In addition to plotting increasing chloride concentrations, decreasing sodium/chloride ratios are plotted on Figure 8 and Figure 9. The strong correlation between the two indicators of seawater intrusion can be observed on these two figures. The potential utility of sodium/chloride ratios as an early indicator of seawater intrusion is shown on Figure 9. This figure shows that by August 1988, chloride concentrations in the Pajaro Valley well had remained relatively constant, yet sodium/chloride ratios were beginning to drop, suggesting incipient seawater intrusion. By September 1990, the rising chloride levels can be clearly correlated to dropping sodium/chloride ratios; definitively associating the high chlorides with seawater intrusion.

CHLORIDE-BICARBONATE RATIOS

The ratio of chloride to bicarbonate-plus-carbonate contrasts the relative abundance of the dominant seawater and freshwater anions. As a ratio of concentrations expressed in mg/L, the ratio for seawater exceeds 100 and values for groundwater unaffected by seawater are generally less than 0.3. For groundwater with relatively low total dissolved solids, this ratio provides little benefit over evaluating chloride concentrations alone; and therefore is not used in the current analyses.

ELECTRIC INDUCTION LOGS

Changes in formation salinity can be measured from within a well using electric induction logging. Induction logging within the well measures the fluid conductivity within the adjacent formation up to a distance of three feet from the well casing. This technique can be used in wells that are completed with PVC casings and screens.

This method can be used as a cost-effective method of detecting seawater intrusion by measuring the electrical conductivity of the formation throughout the depth of the well. If over time, the conductivity increases relative to the baseline value, it could indicate of seawater intrusion. One limitation of this method is that it does not provide concentrations of chloride or other ions that contribute to salinity. Therefore, the use of electric induction logs can only be used qualitatively.

Induction logging has been performed on the Watermater’s coastal sentinel wells since their completion in 2007.

WY 2010 Seawater Intrusion Analysis Report

October 29, 2010 - 17 -
OTHER INDICATORS

Hem (1989) suggested several other indicators for seawater intrusion, including the concentration ratio of calcium to magnesium (approximately 0.3 in seawater and greater in fresh water); the percentage of sulfate among all ions (approximately 8 percent in seawater and larger in fresh water); and the concentrations of minor constituents such as iodide, bromide, boron, and barium. These other indicators are not used in the current analyses for two reasons:

1. The analyses presented in the following sections overwhelmingly suggest that seawater intrusion has not advanced onshore in the Seaside Groundwater Basin.

2. No data exist for the minor constituents such as iodide and barium; and only limited historical data exist for bromide and boron.

Using the other indicators mentioned above is not necessary in light of there being other methods available for indicating seawater intrusion, as discussed in the preceding sections. Should the other methods start showing seawater intrusion, it is likely that the minor constituents of iodide, bromide, boron, and barium will be included in future water quality analyses so that they can be used as supplemental indicators.
SECTION 3
SEAWATER INTRUSION IN THE SEASIDE GROUNDWATER BASIN

The geochemical criteria discussed above, along with various maps, can be used to estimate the presence or lack of seawater intrusion in the Seaside Groundwater Basin. While no single analysis is a definitive indicator of seawater intrusion, the weight of all analyses may point to seawater intrusion.

ANALYSIS APPROACH

As was used in previous Seawater Intrusion Analysis Reports (RBF, 2007; HydroMetrics LLC, 2008; HydroMetrics LLC, 2009a; HydroMetrics WRI, 2009b), this report includes a number of approaches to evaluate seawater intrusion. Data for the 2nd quarter of Water Year 2010 (sampled January-March 2010) and 4th quarter of Water Year 2010 (sampled July-August 2010) were analyzed and mapped to show the spatial distribution of groundwater quality and groundwater elevations. In addition to spatial mapping, historical data were graphed to assess geochemical trends. Data from the 2nd quarter represents conditions during the wet time of the year; data from the 4th quarter represents conditions during the dry time of the year.

Where possible, analyses are separated by depth zone. Two depth zones were chosen, following the system of Yates et al. (2005). Wells assigned to the shallow depth zone generally correlate to the Paso Robles Formation where it exists. This shallow zone is roughly at the same depth as the Salinas Valley Pressure 400-Foot Aquifer. Wells assigned to the deep zone correlate with the Santa Margarita Sandstone where it exists in the Seaside Groundwater Basin. This deep zone is roughly at the same depth as the Salinas Valley Deep Aquifer.

CATION/ANION RATIOS

Eighteen monitoring wells and 15 production wells were used for the geochemical trend analyses (Figure 10). Of the 18 monitoring wells, four are the deep sentinel wells installed by the Watermaster in 2007, and two are the Watermaster’s recently installed MW 5 shallow and MW 5 deep well pair located on the east side of the Bureau of Land Management’s Camp Huffman complex. The remaining 12 monitoring wells represent six well pairs from the MPWMD monitoring well network. A well pairs comprises two wells drilled in close
proximity to one another – one perforated in the shallow zone and the other perforated in the deep zone. Each well pair is represented with a unique color and symbol on Piper and Stiff diagrams. The shallow well of each pair is represented by a filled square on the Piper diagrams; the deep well of each pair is represented by a filled circle on the Piper diagrams.

The 15 production wells included in the analysis are water purveyor wells that are sampled annually for general inorganic minerals as per the Seaside Basin Monitoring and Management Program (2006). The current schedule includes sampling selected coastal monitoring wells quarterly, however all monitoring and production wells are sampled annually during the 4th quarter. Where samples are not available for analysis, the text and figures indicate as such.

SECOND QUARTER WATER YEAR 2010 (JANUARY-MARCH 2010)

A Piper diagram displaying analyses from seven monitoring wells in the Seaside Groundwater Basin for the 2nd quarter Water Year 2010 (January-March 2010) is shown in Figure 11. Analyses from only seven wells are shown because most of the monitoring well pairs, and all of the production wells, are not sampled during this quarter; they are only sampled annually in the 4th quarter. Appendix A includes individual Piper diagrams for each well to show trends over time.

The monitoring wells generally cluster in a single area on the Piper diagram that is consistent with previous data. The location on the piper diagram indicates that the water from both the deep and shallow well pairs straddle the sodium-chloride and sodium-bicarbonate type water. The diagrams in Appendix A show no trends over time towards typical seawater on the Piper diagrams; indicating that there is no seawater intrusion at any of the analyzed wells.

Stiff diagrams for the monitoring wells sampled during the 2nd quarter of Water Year 2010 are shown in the left column on Figure 12 through Figure 15. The Stiff diagrams are coded to match the colors and symbols on the Piper diagram. None of the Stiff diagrams show the high chloride spike shown on Figure 7 that indicates seawater intrusion. The shapes of the Stiff diagrams for the paired monitoring wells in the Northern Subbasin are similar to the shapes of the 4th quarter 2009 data.
FOURTH QUARTER WATER YEAR 2010 (JULY-AUGUST 2010)

Piper diagrams displaying groundwater quality data from 18 monitoring wells and 15 production wells in the Seaside Groundwater Basin for the 4th quarter of Water Year 2010 (July-August 2010) are shown in Figure 16 and Figure 17, respectively. Appendix A includes individual Piper diagrams for each well to show trends over time.

Except for Sentinel Wells 1 through 3, Figure 16 shows the water quality data for the monitoring wells clustering in a single area on the Piper diagram. This pattern is similar to that observed during the 4th quarter 2009. Most of the groundwater is of sodium-chloride /sodium-bicarbonate type. Figure 17 shows some production wells plotting within the same area as the monitoring wells. The variation of the plot location on the Piper diagram for production wells is due to higher sulfate and chloride anions than in the monitoring wells. These wells can be characterized as sodium-sulfate-chloride type waters.

It was previously observed that water quality in Well SBWM-1 appeared to be trending towards being more sodium and potassium rich over time (HydroMetrics LLC, 2008). This trend has not continued, as the water chemistry for this well has moved back to be more similar to the chemistry observed in 2007. The Piper diagram shows no indication of seawater intrusion at any of the analyzed wells.

Stiff diagrams for the 18 monitoring wells sampled during the 4th quarter of Water Year 2010 are shown in the right column on Figure 12 through Figure 15. The shapes of the Stiff diagrams for the paired monitoring wells are similar to the shapes of the Stiff diagrams from previous years. Stiff diagrams for the 15 production wells sampled during the 4th quarter of Water Year 2010 are shown in the right column on Figure 18 through Figure 20. These production well Stiff diagrams show the same shapes as were observed in the 4th quarter of Water Year 2009. None of the Stiff diagrams show the high chloride spike shown on Figure 7 that indicates seawater intrusion.

The York School well, in the Laguna Seca subarea, and Public Works Corp Yard well, in the Southern Coastal subarea both have Stiff diagram different from most other wells’ water quality (Figure 18). Although the shapes are different, they do not display the high chloride spike associated with seawater intrusion. None of the production wells analyzed shows any indication of seawater intrusion.
Figure 10: Wells Used for Current Seawater Intrusion Analyses

WY 2010 Seawater Intrusion Analysis Report
October 29, 2010 - 22 -
Figure 11: Piper Diagram for Seaside Groundwater Basin Monitoring Wells, 2nd Quarter Water Year 2010 (January-March 2010)
(Data source: Watermaster)
Figure 12: Stiff Diagrams for MSC, Fort Ord 9, and Fort Ord 10 Wells
(Data source: Watermaster)
Figure 13: Stiff Diagrams for PCA West, PCA East, and Ord Terrace Wells
(Data source: Watermaster)

Note: The Ord Terrace shallow well is designated as shallow but it was completed in the upper part of the Santa Margarita aquifer. This is evident in similar shape of the Stiff diagrams for the shallow and deep zones.
Figure 14: Stiff Diagrams for Watermaster Monitoring Wells 1 - 3
(Data source: Watermaster)
Figure 15: Stiff Diagrams for Watermaster Monitoring Wells 4-5 (Data source: Watermaster)

2nd Quarter 2010

Sentinel MW #4: 715

Sentinel MW #4: 900

Watermaster MW #5 Shallow

Watermaster MW #5 Deep

4th Quarter 2010

Samples collected annually in 4th Quarter
Figure 16: Piper Diagram for Seaside Groundwater Basin
Monitoring Wells, 4th Quarter Water Year 2010 (July-August 2010)
(Data source: Watermaster)
Figure 17: Piper Diagram for Seaside Groundwater Basin
Production Wells, 4th Quarter Water Year 2010 (July-August 2010)
(Data source: Watermaster)
Samples collected annually in 4th Quarter

Pasadera Paddock Well was sampled in place of Main Gate Well in 2010

Figure 18: Stiff Diagrams for Southern Subbasin Production Wells
(Data source: Watermaster)
Figure 19: Stiff Diagrams for Northern Subbasin Production Wells
(Data source: Watermaster)
Figure 20: Stiff Diagrams for Northern Subbasin Production Wells
(Data source: Watermaster)
CHLORIDE CONCENTRATIONS

TRENDS

Chemographs showing chloride concentrations over time are plotted for each of the MPWMD and Watermaster monitoring wells plotted on the Piper and Stiff diagrams. An example plot displaying chloride concentrations for the shallow PCA West well is shown on Figure 21. The complete set of chemographs is included in Appendix B.

A number of chemographs in Appendix B show slight increases in chloride concentration. The wells with increases include: PCA-W deep, PCA-E shallow, MSC shallow, FO-09 shallow, FO-9 deep, FO-10 deep, Sentinel Well 1 at 1,140 ft, Sentinel Well 1 at 1,390 ft, Sentinel Well 3 at 870 ft, and Sentinel Well 3 at 1,275 ft. Of the two wells from last year’s SIAR that had increasing chloride concentrations, FO-10 deep is the only monitoring well that continued to show increases in chloride concentrations.

As mentioned previously, Stiff and Piper diagrams for these wells did not indicate seawater intrusion. It is likely that the increases are merely due to localized fluctuations that are unrelated to seawater intrusion. No additional monitoring is warranted, although their future trends need to be flowed.

The chloride concentration trend graphs at this time do not indicate any seawater intrusion in the Seaside Groundwater Basin, based on the existing monitoring data.
Figure 21: Historical Chloride and Sodium/Chloride Molar Ratios, Shallow PCA West Well
CHLORIDE CONCENTRATION MAPS

FOURTH QUARTER WATER YEAR 2010 (JULY-AUGUST 2010)

Fourth quarter Water Year 2010 chloride concentrations were mapped using data from July and August 2010. The maps for the shallow and deep zones are included on Figure 22 and Figure 23 respectively.

The shallow zone 4th quarter Water Year 2010 chloride concentration map is shown on Figure 22. Chloride data from shallow wells are posted on this map, but do not show a spatial distribution that can be readily contoured because of large differences in concentrations in close proximity to each other. For the data available in the shallow zone, chloride concentrations near the coast are around 49 mg/L. More inland wells have consistently shown higher chloride concentrations than the coastal wells. Based on the existing data, there is no discernable spatial trend of higher coastal chloride concentrations, and therefore no indication of seawater intrusion.

The deep zone 4th quarter Water Year 2010 chloride concentration map is shown on Figure 23. Because the chloride data shows no discernable spatial distribution, with high concentrations in close proximity to low concentrations, the data cannot be readily contoured. For the data available in the deep zone, chloride concentrations near the coast range between 62 and 215 mg/L; this is similar to the previous year’s concentrations. The highest chloride concentration is at the same well as previous years, at the 900 foot depth in sentinel well, SBWM-4. Based on the existing data, there is no discernable spatial trend of higher coastal chloride concentrations, and therefore no indication of indication of seawater intrusion.

SODIUM/CHLORIDE RATIOS

Chemographs showing sodium/chloride molar ratios over time are plotted for each of the 18 monitoring wells plotted on the Piper and Stiff diagrams. An example plot displaying ratios for the shallow PCA West well is shown on Figure 21. The complete set of chemographs is included in Appendix B.

Although sodium/chloride ratios dropped in some wells during 2010; none of the data from the monitoring wells display a steady downward trend in sodium/chloride ratios. Furthermore, the majority of the ratios are consistently
above 0.9. The sodium/chloride ratios, therefore, do not indicate any incipient or ongoing seawater intrusion.
Figure 22: Shallow Zone Chloride Concentration Map – 4th Quarter WY 2010
Figure 23: Deep Zone Chloride Concentration Map – 4th Quarter WY 2010
ELECTRIC INDUCTION LOGS

Two induction logging events took place in the sentinel wells during WY 2010. The number of logging events was reduced from previous years based on a recommendation made in last year’s SIAR to reduce logging from quarterly to semi-annually. The first logging event was conducted in January, and the second in July. The logs from these events are included in Figure 24 and Figure 25, respectively. These figures are slightly different from previous years’ figures, as all the individual logs for previous logging events have been averaged instead of being displayed separately. This reduces the number of lines on the chart, making it easier to read.

Feeney (2007) described the baseline induction logs for each of the wells as follows:

“SBWM-1 — The upper 50 feet of this well shows very high conductivities. This signature is present in all of the wells and is the result of the 50-foot steel conductor casing. However, because the water table is below the conductor casing at all locations, the steel casing does not interfere with data collection within the saturated sediments below. Below the conductor casing in SBWM-1, the sediment materials are dry to a depth of approximately 115 feet. Below this depth, there is approximately 10 feet of sand containing fresh water. Below 125 feet and extending to approximately 350 – 400 feet is sand containing saline water with conductivities measuring as high as 10,000 μmhos/cm. This saline water is contained within the Dune/Beach Sand Deposits and the Aromas Sand. Below this depth, conductivities are relatively low with the exception of the thick marine clay between approximately 600 – 700 feet. The other conductive zones also correlate with clay zones.

SBWM-2 — As in SBWM-1 there is a thin layer of fresh water overlying a zone of saline water to approximately 130 feet within the Beach/Dune Sands and Aromas Sand. Below this depth, the materials become increasingly clayey, complicating the interpretation. Below this depth, there are no obvious zones of anomalous conductivity; that is, the zones that are more conductive correlate with clay zones.

SBWM-3 — In SBWM-3 saline water extends to a depth of approximately 100 feet within the Dune/Beach Sand and Aromas
Deposits. Below 100 feet, the materials become clay and conductivities rapidly decline. Again, below the shallow saline water in the sand deposits, all zones of increased conductivity correlate with clay zones.

SBWM-4 — As with the other wells, the induction log reveals a thin layer of fresh water overlying saline water with the Dune Sands/Beach Deposits to a depth of approximately 100 feet. Below this depth the materials become clay and there are no additional zones of increased conductivity uncorrelated with clay zones.”

The salinity changes shown in Figure 24 and Figure 25 are only relative, and do not allow direct measurement of TDS or chloride concentrations in the aquifer. They do, however, provide a means to determine changes in salinity over time. In previous years, the Dune Sands and Aromas Formation have shown slight increases in salinity. This trend has continued for sentinel well SBWM-2, SBMW-3, and SBMW-4 in WY 2010. SBMW-1, however, shows decreasing salinity compared to previous results. As has been the case historically, none of the wells show detectable changes to the lower aquifers where production wells extract groundwater. This indicates that there is no seawater intrusion into these deeper aquifers.
Figure 24: Sentinel Well Induction Log January 2010
Figure 25: Sentinel Well Induction Log July 2010
GROUNDWATER LEVELS

Groundwater levels are not direct indicators of seawater intrusion, but indirectly suggest opportunities for seawater intrusion. Coastal groundwater levels at or near sea level are not sufficient to repel seawater intrusion, and will likely allow some level of seawater intrusion.

TRENDS

Groundwater level hydrographs representative of well pairs the Northern Coastal subarea and a shallow well in the Southern Coastal subarea are shown on Figure 26.

NORTHERN COASTAL SUBAREA

Groundwater level data from the PCA-East well are representative of groundwater levels in the Northern Coastal subarea, downgradient of nearby production wells. This hydrograph shows the effect of production from the nearby CAW production well on groundwater levels in the deep zone. In this deep zone, groundwater levels have increased slightly over the past year. The increase appears to have interrupted the historical downward trend of approximately one foot per year. The reason for the increase is most likely a combination of factors: reduced pumping, higher rainfall in Water Year 2010, and increased aquifer storage by injection. The past two consecutive years of pumping have been lower due to the triennial pumping reduction (see Pumping section on page 51 for more details). Rainfall for WY 2010 was over four inches the long-term average. Just over 1,100 acre-feet were stored in the deep aquifer by MPWMD using its injection wells. All these factors combined have allowed groundwater levels to stabilize as shown on Figure 26. Although this observation is positive for the basin, it is still important to note that the Santa Margarita Sandstone has limited connection to the ocean and is highly confined by the layers above it. This means that the amount of water entering the Santa Margarita Sandstone is limited and is therefore always susceptible to depletion if more water is pumped than is being recharged.

In the shallow zone, recent groundwater levels have displayed a very different pattern to previous years, with an increase of almost five feet above the expected seasonal summer fluctuation (Figure 26). The reason for the increase is most likely due to the triennial reduction in pumping and the above average rainfall for WY 2010.

WY 2010 Seawater Intrusion Analysis Report
October 29, 2010
Seasonal increases are usually related to reduced wintertime production in the shallow aquifer, and increased pumping during summer. Although the shallow seasonal fluctuations correspond with deep zone fluctuations, it is because seasonal pumping occurs in both aquifers, and not because the aquifers are closely connected.

SOUTHERN COASTAL SUBAREA

In the Southern Coastal subarea, the KMART monitoring well is representative of groundwater levels near the coast (Figure 26). The hydrograph shows that groundwater elevations have always been above sea level and have continued to remain stable over time.

GROUNDWATER ELEVATION MAPS

SECOND QUARTER WATER YEAR 2010 (JANUARY-MARCH 2010)

Groundwater level maps for the shallow and deep aquifer zones for the 2nd quarter of Water Year 2010 are shown on Figure 27 and Figure 28 respectively.

Second quarter groundwater levels in the deep aquifer, particularly along the coast, are generally higher than 4th quarter groundwater levels by up to 10 feet due to the seasonal variations seen on Figure 26. The 20 foot below sea level contour around CAW's main production wells in the Northern Coastal subarea does not occur in Water Year 2010 as it does in previous years.

The shallow aquifer does not show seasonal fluctuations to the same extent as the deep aquifer. The contour pattern remains essentially the same along the coast and in the Laguna Seca subarea. However, in the Northern Inland subarea, where new monitoring wells (shallow and deep SBWM-5, Figure 10) were recently constructed, the contour pattern has changed from the previous years' contour maps. The new data points have shallower groundwater levels than previously expected in this area. The resultant contours are more similar to those predicted by the Seaside Basin groundwater flow model (HydroMetrics LLC, 2009b). In the shallow aquifer in eastern part of the Northern Inland subarea, an area has been indicated to be potentially dry due to geologic structural control (Figure 27).
Overall, groundwater elevations in the coastal subareas have increased over elevations from the previous water year. Groundwater elevations in the Laguna Seca subarea remain essentially the same.

FOURTH QUARTER WATER YEAR 2010 (JULY-AUGUST 2010)

Groundwater elevation maps for the shallow and deep aquifer zones for the 4th quarter of Water Year 2010 are shown on Figure 29 and Figure 30 respectively. The contours for the shallow aquifer reflect a slight increase in groundwater levels, particularly in the Northern Coastal subarea (Figure 29). The 4th quarter deep zone groundwater elevations (Figure 30) coastal pumping depression is less extensive than the previous year’s depression. As mentioned in the previous section, it appears that the historical downward groundwater level trend of approximately one foot per year has been interrupted due to a combination of increased aquifer storage, less pumping, and increased rainfall in Water Year 2010.
Figure 26: Example Hydrographs (Source: Watermaster)
Figure 27: Shallow Zone Water Elevation Map – 2nd Quarter WY 2009 (January 2009)

Due to the geologic structure in this area, the shallow aquifer is likely dry.

Wells with Water-Level Data (2nd Quarter WY 2010, Shallow Zone)
- Monitoring Well
- Production Well

Shallow Zone Groundwater Elevation (feet MSL)
- Groundwater Elevation
- Dashed where uncertain (no well data)
- Adjudicated Seaside
- Basin Boundary

Wy 2010 Seawater Intrusion Analysis Report
October 29, 2010 - 47 -
Figure 28: Deep Zone Water Elevation Map – 2nd Quarter WY 2009 (January 2009)
Figure 29: Shallow Zone Water Elevation Map – 4th Quarter WY 2009 (July/August 2009)

Due to the geologic structure in this area, the shallow aquifer is likely dry.
Figure 30: Deep Zone Water Elevation Map – 4th Quarter WY 2009 (July/August 2009)
Pumping

Groundwater pumping in excess of freshwater recharge and subsurface inflow from adjacent areas is the primary cause of seawater intrusion. Mapping pumping volumes gives an indirect indication of the threat of seawater intrusion. Ideally, pumping should be equally distributed throughout a basin, and occur relatively far inland.

Water Year 2009

A map showing the distribution of pumping in the Seaside Groundwater Basin during Water Year 2009 (October 1, 2008 to September 31, 2009) is shown on Figure 31. This map shows that pumping in the basin is concentrated at CAW's two large production wells (Ord Grove 2 and Paralta); these wells account for roughly half of the total production from the Seaside Groundwater Basin. The advantage of pumping significant amounts from these two wells is that they are both located away from the coastline. The disadvantage of using these two wells simultaneously is that they are relatively close to each other and thus combined cause greater localized drawdown than if they were farther apart.

Water Year 2009 had the largest annual decrease in pumping in the basin in recent years. The decrease was a result of the Court-mandated triennial pumping reduction. The decrease was 697.3 acre-feet, representing a 13 percent reduction in basin pumping.

Water Year 2010

Figure 31 also shows the pumping distribution for Water Year 2010. As with previous years, the majority of pumping occurs at CAW's Ord Grove 2 and Paralta wells. Total pumping in Water Year 2010 was 4,547.6 acre-feet, which is only 0.1 acre-feet less than Water Year 2009. As can be seen in Figure 31, the distribution of pumping is similar to Water Year 2009, with slightly more being pumped by the Ord Grove 2 and Paralta wells.
Figure 31: Pumping Distribution for Water Years 2009 and 2010

- Wells pumping less than 1 acre-foot per year are not included.
- Where possible, the well is located at the bottom of the bar chart representing production. If a number of wells are in close proximity, the chart is moved to prevent overlap.
- Data for the following wells were not available at the time this report was prepared: Costado and SECA.
- Pumping for the two Laguna Sea Golf Course wells (Well 12 and Main Gate) are combined, as they are not metered separately.
PROTECTIVE GROUNDWATER ELEVATIONS

Preliminary protective groundwater elevations were determined in 2009 using the Seaside Groundwater Basin groundwater flow model and cross-sectional modeling (HydroMetrics LLC, 2009b). Preliminary protective elevations are shown in Table 1. Preliminary protective elevations for both the deep and shallow aquifers were established for monitoring well pairs with both a shallow and deep completion.

Table 1: Summary of Preliminary Protective Elevation Monitoring Locations

<table>
<thead>
<tr>
<th>Subarea</th>
<th>Well</th>
<th>Completion</th>
<th>Protective Elevation, Feet above sea level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Coastal</td>
<td>MSC</td>
<td>Deep</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shallow</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PCA-W</td>
<td>Deep</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shallow</td>
<td>2</td>
</tr>
<tr>
<td>Sentinel Well 3</td>
<td>Deep</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Southern Coastal</td>
<td>CDM-MW4</td>
<td>Shallow</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 32 through Figure 35 show the historical groundwater elevations at each of the target protective elevation locations. Groundwater levels continue to be below preliminary protective elevations in all deep target monitoring wells (MSC deep, PCA-W deep, and Sentinel Well 3). Two of the three shallow wells’ groundwater levels are above preliminary protective elevations: PCA-W shallow and CDM-MW4. MSC shallow is the only shallow target well with levels below its preliminary protective elevation.

The preliminary protective elevations for all wells could be fine-tuned, and probably decreased by up to a few feet for some of them if aquifer properties estimated using the final calibrated Seaside Basin flow model are used in place of the properties used during initial cross-sectional modeling (HydroMetrics LLC, 2009b). The calibrated values were not used in the first attempt due to the timing of getting the model report out in time to meet the Watermaster’s annual deadline.
Figure 32: MSC Deep and Shallow Groundwater and Preliminary Protective Elevations
Figure 33: PCA West Deep and Shallow Groundwater and Preliminary Protective Elevations
Figure 34: CDM-MW4 Groundwater and Preliminary Protective Elevations

Figure 35: Sentinel Well 3 Groundwater and Preliminary Protective Elevations
SECTION 4
CONCLUSIONS

Depressed groundwater levels, continued pumping in excess of recharge and fresh water inflows, and ongoing seawater intrusion in the nearby Salinas Valley all suggest that seawater intrusion could occur in the Seaside Groundwater Basin. In spite of these factors, no seawater intrusion is currently observed in existing monitoring wells. Analyses which indicate that seawater intrusion is not occurring include:

- All water samples for Water Year 2010 from depth-discreet monitoring wells plot in a single cluster on Piper diagrams, with no geochemical evolution towards seawater.

- Water samples collected from sentinel wells generally plot in a single cluster on Piper diagrams.

- Water quality in some of the production wells is different than the water quality in the monitoring wells. This may be a result of mixed water quality from both shallow and deep zones in which these wells are perforated. The production wells’ water qualities are not indicative of seawater intrusion.

- No water samples plotted in Stiff diagrams are indicative of incipient seawater intrusion.

- Wells with chloride concentration increases over the past year are: PCA-W deep, PCA-E shallow, MSC shallow, FO-09 shallow, FO-9 deep, FO-10 deep, Sentinel Well 1 at 1,140 ft, Sentinel Well 1 at 1,390 ft, Sentinel Well 3 at 870 ft, and Sentinel Well 3 at 1,275 ft. Although the increases mentioned above do not indicate seawater intrusion, their future trends must be continued to be followed. Stiff and Piper diagrams for these wells do not indicate seawater intrusion, and it is likely that the increase is merely a localized fluctuation that is unrelated to seawater intrusion. No additional monitoring is warranted.

- Of the wells from last year’s SIAR that had increasing chloride concentrations, the deep Fort Ord 10 well is the only monitoring well that continued with an increase over the past year. Stiff and Piper diagrams
for this well do not indicate seawater intrusion, and it is likely that the increase is merely a localized fluctuation that is unrelated to seawater intrusion. No additional monitoring is warranted.

- No wells display decreasing sodium/chloride ratios that would indicate seawater intrusion.

- Maps of chloride concentrations do not show chlorides increasing towards the coast.

- Although production wells have a different water quality than the monitoring wells, this is probably as a result of them being screened across both shallow and deep zones. The production well water qualities are not indicative of seawater intrusion.

- Groundwater production in the Seaside Groundwater Basin remained the same as Water Year 2009. The amount pumped, 4,547.6 acre-feet, is less than the Court-mandated operating yield of 5,600 acre-feet per year. The lower than historic pumping is a result of implementing the Court-mandated triennial reduction in an effort to bring the basin closer to hydrologic balance which is necessary to prevent seawater intrusion.

- Groundwater levels continue to be below preliminary protective elevations in all deep target monitoring wells (MSC deep, PCA-W, and Sentinel Well 3). Two of the three shallow wells' groundwater levels are above protective elevations: PCA-W shallow and CDM-MW4. MSC shallow remains below preliminary protective elevations.

In spite of the definitive geochemical data, the groundwater level and pumping data suggest that a potential for seawater intrusion exists. Northern Coastal subarea groundwater levels in the deep zone remain below sea level (Figure 28 and Figure 30). Two potential processes may explain why no seawater intrusion has been observed in the deep coastal wells:

- The location of seawater/fresh water interface is currently unknown. It is, however, sufficiently far offshore in the deep zone that it has not reached the coastal monitoring wells. A seawater interface may be moving towards the coast, but may take many years to arrive. Before the interface arrives, pumping will mine much of the fresh water stored beneath the ocean in the lower aquifer.
Overlying aquifers and aquitards limit or prevent seawater from percolating into the lower aquifer. Groundwater level data and results from groundwater modeling suggest that this condition is occurring. Coastal groundwater levels in aquifers that are in close hydraulic communication with the ocean remain near sea level because the ocean acts as a constant-pressure reservoir. Northern coastal subarea groundwater levels in the deep aquifer are more than 20 feet below sea level (Figure 28 and Figure 30), suggesting that this aquifer is not in close communication with the ocean. This is further evidence that groundwater in the deep aquifer is being mined rather than replaced by seawater.

These two processes are displayed in Figure 36. The two processes are not independent, and it is likely that some combination of both factors is occurring.
Figure 36: Possible Processes Limiting Seawater Intrusion
SECTION 5
RECOMMENDATIONS

The analyses presented previously in this report are based on existing data. While informative, the data are spatially incomplete and temporally sporadic. The following recommendations should be implemented to monitor and track seawater intrusion.

SEMI-ANNUAL WATER QUALITY SAMPLING IN WELL SBWM-4

It is recommended that semi-annual samples continue to be collected at sentinel well SBWM-4 because chloride concentrations from a depth of 900 feet below surface remain greater than 250 mg/L.

CONTINUE TO ANALYZE AND REPORT ON WATER QUALITY ANNUALLY

Seawater intrusion is a threat, and data must be analyzed regularly to identify incipient intrusion. Maps, graphs, and analyses similar to what are found in this report should be developed every year.

REFINE PRELIMINARY SHALLOW PROTECTIVE GROUNDWATER ELEVATION

It is recommended that the preliminary protective groundwater elevation estimated during modeling (HydroMetrics LLC, 2009b) be refined using final calibrated aquifer properties from the Seaside Basin groundwater flow model. It is expected that the protective elevations will be decreased up to a few feet, which will make them more practical to meet.
This page left intentionally blank.
Section 6
REFERENCES

APPENDIX A: PIPER DIAGRAMS
FOR INDIVIDUAL WELLS
Figure A-1: Piper Diagram of PCA West Shallow

- Calcium (Ca)
- Chloride (Cl)
- Sulfate (SO₄)
- Magnesium (Mg)
- Sodium (Na)
- Potassium (K)
- Carbonate (CO₃)
- Bicarbonate (HCO₃)

Legend:
- 10/24/2006
- 10/30/2007
- 3/27/2008
- 8/18/2008
- 1/28/2009
- 7/20/2009
- 3/1/2010
- 7/30/2010
- Seawater (typical)

% meq/l
Figure A-2: Piper Diagram of PCA West Deep
Figure A-3: Piper Diagram of PCA East Shallow
Figure A-4: Piper Diagram of PCA East Deep
Figure A-5: Piper Diagram of Ord Terrace Shallow
Figure A-6: Piper Diagram of Ord Terrace Deep

No sample collected in 2010 due to pump stuck in well
Figure A-7: Piper Diagram of MSC Shallow
Figure A-8: Piper Diagram of MSC Deep
Figure A-9: Piper Diagram of Fort Ord 9 Shallow
Figure A-10: Piper Diagram of Fort Ord 9 Deep
Figure A-11: Piper Diagram of Fort Ord 10 Shallow
Figure A-12: Piper Diagram of Fort Ord 10 Deep
Figure A-13: Piper Diagram of SBWM-1 1,140 ft sample
Figure A-14: Piper Diagram of SBWM-1 1,390 ft sample
Figure A-15: Piper Diagram of SBWM-2 1,000 ft sample
Figure A-16: Piper Diagram of SBWM-2 1,470 ft sample
Figure A-17: Piper Diagram of SBWM-3 870 ft sample
Figure A-18: Piper Diagram of SBWM-3 1,275 ft sample
Figure A-19: Piper Diagram of SBWM-4 715 ft sample
Figure A-20: Piper Diagram of SBWM-4 900 ft sample
Figure 37: Piper Diagram of SBMW-5 Shallow Well

- **Ca** + **Mg**
- **Na** + **K**
- **SO\(_4\)**
- **HCO\(_3\)** + **CO\(_3\)**
- **Cl**

- 8/26/2010
- Seawater (typical)
Figure 38: Piper Diagram of SBMW-5 Deep Well
Figure A-21: Piper Diagram of Public Works Corp. Yard Production Well
Figure A-22: Piper Diagram of Plumas 4 Production Well
Figure A-23: Piper Diagram of York School Production Well
Figu ell re A -24: Piper Diagram of Pasadera Main Gate Production Well

No sample collected in 2010 from Main Gate Well. Pasadera Paddock Well sampled in its place.

Figure A-24: Piper Diagram of Pasadera Main Gate Production Well
Figure A-25: Piper Diagram of LS County Park #1 Production Well
Figure A-26: Piper Diagram of LS County Park #2 Production Well
Figure A-27: Piper Diagram of Playa No. 3 Production Well
Figure A-28: Piper Diagram of Coe Ave. Production Well
Figure A-29: Piper Diagram of Military Production Well
Figure A-30: Piper Diagram of Luzern #2 Production Well
Figure A-31: Piper Diagram of Darwin Production Well
Figure A-32: Piper Diagram of Ord Grove No. 2 Production Well
Figure A-33: Piper Diagram of Seaside City No. 3 Production Well

No samples collected in 2009 and 2010.
Figure A-34: Piper Diagram of Seaside City No. 4 Production Well
Figure A-35: Piper Diagram of PRTIW
Figure A-36: Piper Diagram of Paralta Production Well
Figure A-37: Piper Diagram of Reservoir Production Well
APPENDIX B: CHLORIDE AND SODIUM/CHLORIDE RATIO GRAPHS
Figure B-1: PCA West Shallow Well Chemograph
Figure B-2: PCA West Deep Well Chemograph
Figure B-3: PCA East Shallow Well Chemograph
Figure B-4: PCA East Deep Well Chemograph
Figure B-5: Ord Terrace Shallow Well Chemograph
Figure B-6: Ord Terrace Deep Well Chemograph
Figure B-7: MSC Shallow Well Chemograph
Figure B-8: MSC Deep Well Chemograph
Figure B-9: Fort Ord 10 Shallow Well Chemograph
Figure B-10: Fort Ord 10 Deep Well Chemograph
Figure B-11: Fort Ord 9 Shallow Well Chemograph
Figure B-12: Fort Ord 9 Deep Well Chemograph
Figure B-13: SBWM-1: 1,140 foot depth sample Chemograph
Figure B-14: SBWM-1: 1,390 foot depth sample Chemograph
Figure B-15: SBWM-2: 1,000 foot depth sample Chemograph
Figure B-16: SBWM-2: 1,470 foot depth sample Chemograph
Figure B-17: SBWM-3: 870 foot depth sample Chemograph
Figure B-18: SBWM-3: 1,275 foot depth sample Chemograph
Figure B-19: SBWM-4: 715 foot depth sample Chemograph
Figure B-20: SBWM-4: 900 foot depth sample Chemograph
Figure B-21: SBWM-5: Shallow Well Chemograph
Figure B-22: SBWM-5: Deep Well Chemograph