SEASIDE BASIN WATERMASTER MEMORANDUM 2011-01

Date: August 8, 2011
To: Seaside Basin Watermaster
From: Jonathan Lear, PG, CHg, Senior Hydrogeologist
 Joe Oliver, PG, CHg, Water Resources Division Manager
 Tom Lindberg, Associate Hydrologist

Subject: Report of First and Second Quarter Water Year 2011, Groundwater-Quality and Groundwater-Level Data Collected for the Seaside Groundwater Basin Watermaster

SUMMARY

This memorandum transmits and summarizes groundwater-quality and groundwater-level data collected for the Seaside Groundwater Basin Watermaster Board (Watermaster) during the first and second quarters of Water Year (WY) 1 2011. This report incorporates the data that were collected and reported during the period from October 1, 2010 through March 31, 2011. This information is being provided to the Watermaster for information purposes, and is in compliance with the monitoring protocols described in the Watermaster’s Seaside Basin Monitoring and Management Program (SBMMP, revision date September 5, 2006), which was prepared in response to the court decision filed March 27, 2006 (as amended by February 9, 2007 filing) in the Seaside Basin adjudication case. This document has been prepared by the Monterey Peninsula Water Management District (MPWMD) on behalf of the Watermaster.

This document is organized into the following three categories of data:

- Precipitation to date,
- Water-quality data collected from MPWMD Quarterly wells, and
- Static water levels collected from MPWMD and other Watermaster basin wells.

1 The WY begins on October 1, and ends September 30 of the indicated year. The first quarter represents 10/1/09 through 12/30/09 and the second quarter represents 1/1/10 through 3/31/10.
PRECIPITATION

A continuous precipitation gage is located at the south eastern corner of the Southern Coastal Sub-Area of the Seaside Groundwater Basin. Data from the precipitation gage are posted to the www.weatherunderground.com website and are available real time as well as archival data sets. Figure 1 shows the location of the weather station and the average annual rainfall totals for the Seaside Groundwater Basin. Figure 2 shows daily and cumulative rainfall recorded by the weather station for the first and second quarter of the 2011 water year. Average annual rainfall for the location of the weather station is 17.1 inches. As Figure 2 illustrates, at the close of the second quarter of the WY 2011, the weather station had already logged over 18 inches, which makes this an above average rainfall year for the Seaside Basin.

WATER-QUALITY DATA: MPWMD AND OTHER BASIN WELLS

MPWMD Coastal Monitor-Well Network

Under the current monitoring program conducted for the Watermaster, the MPWMD collects quarterly samples from six monitor wells at three locations that are closest to the coastline, and annually from six additional wells at three locations that are farther from the coastline. The well numbers, names and sampling schedule for the MPWMD coastal monitor wells currently being sampled for the Watermaster are listed below.

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Well Name</th>
<th>Sample Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>15S01E15N3</td>
<td>MSC-Shallow</td>
<td>quarterly</td>
</tr>
<tr>
<td>15S01E15N2</td>
<td>MSC-Deep</td>
<td>quarterly</td>
</tr>
<tr>
<td>15S01E15F1</td>
<td>PCA-W-Shallow</td>
<td>quarterly</td>
</tr>
<tr>
<td>15S01E15F2</td>
<td>PCA-W-Deep</td>
<td>quarterly</td>
</tr>
<tr>
<td>15S01E11Pa</td>
<td>FO-09-Shallow</td>
<td>quarterly</td>
</tr>
<tr>
<td>15S01E11Pb</td>
<td>FO-09-Deep</td>
<td>quarterly</td>
</tr>
<tr>
<td>15S01E15K5</td>
<td>PCA-E-Shallow</td>
<td>annually</td>
</tr>
<tr>
<td>15S01E15K4</td>
<td>PCA-E-Deep</td>
<td>annually</td>
</tr>
<tr>
<td>15S01E23Ca</td>
<td>Ord Terrace-Shallow</td>
<td>annually</td>
</tr>
<tr>
<td>15S01E23Cb</td>
<td>Ord Terrace-Deep</td>
<td>annually</td>
</tr>
<tr>
<td>15S01E12Fa</td>
<td>FO-10-Shallow</td>
<td>annually</td>
</tr>
<tr>
<td>15S01E12Fc</td>
<td>FO-10-Deep</td>
<td>annually</td>
</tr>
</tbody>
</table>

These sites are shown on Figure 3 and completion data for these wells are shown in Table 1. At each site, a “shallow” and “deep” monitor well have been installed (either in separate boreholes or as multiple completions in a single borehole), generally corresponding to well completions within
the two principal aquifer units that have been historically recognized in the Seaside Basin, the Paso Robles Formation (QTp and QTc for undifferentiated Continental Deposits) and Santa Margarita Sandstone (Tsm), respectively. More recently, it has been recognized that the Tsm deposits transition to the Purisima Formation (Tp) in the northern coastal subarea of the Basin. The monitor wells are constructed of 2-inch PVC casing, with screens adjacent to the more permeable (i.e., based on lithologic and geophysical logging analyses) sand “packages” within each aquifer unit. The aquifer units are separated from each other in the wells by cement strata-isolation seals.

MPWMD Coastal Monitor Wells Water-Sample Collection

Water-sample collection from the MPWMD coastal monitor wells for quarters 1 and 2 of WY 2011 were accomplished by the Low-Flow Method. As a means to investigate alternative water-quality sampling technologies, MPWMD staff completed a test of different “low-flow” sampling methodologies at Watermaster database Well No. 258 (MW-B-23-180) on June, 4, 2009. Results from the methodology comparison along with cost estimates for implementation of each methodology were presented to the Watermaster Technical Advisory Committee (TAC) at the June 10, 2009 meeting. Following the recommendation of the TAC, MPWMD staff purchased a Micro Purge well sampling pump and pump controller from QED Environmental Systems, Inc. Motivation behind changing the sampling method included a desire to: (a) switch to a less invasive sampling method to prolong the life of the monitoring wells and (b) implement a less labor-intensive method that will be more cost effective to the Watermaster in the long run. Details of this sampling methodology are discussed below. This methodology will be used to sample MPWMD monitor wells for all quarters of WY 2011.

Low-Flow Sampling Method

Low-flow/low-volume purging method is sample collection using a pumping mechanism that produces low-flow rates [less than 1 liter per minute (lpm) or less than 0.26 gallon per minute (gpm)] that cause minimal drawdown of the static water table and usually employs a flow cell in which geochemical parameters are continuously monitored. These parameters may include dissolved oxygen content, oxidation-reduction potential (redox), conductivity, turbidity, and/or pH. The intent of this sampling protocol is to collect a representative sample from the monitored groundwater zone. A representative sample may be obtained when all the monitored chemical parameters have stabilized, thus quantitatively demonstrating that the sample being collected is in equilibrium with the groundwater system. The low-flow/low volume purging method (purging to parameter stability) tends to isolate the interval being sampled, which provides more accurate water-quality measurements and reduces the volume of purge water generated. This method has an advantage in that it can limit vertical mixing and volatilization of any volatile organic compounds (VOCs) in solution within the well casing or borehole, as compared to high-flow purging and sampling (e.g., air-lift sampling method).

Figure 4 illustrates the QED Environmental Systems, Inc. low-flow sampling equipment. The bladder pump is placed in the monitor well and powered by a fuel source of compressed gas. The peristaltic action of the pump lifts water from the well and initiates flow through the well screen at the location where the drop tube and intake assembly have been placed. An electric wire sounder
is used to measure drawdown to insure minimal drawdown is caused by pumping the well. Water-quality parameters are monitored at the flow cell as the well is purged.

The low-flow/low-volume purging method of sample collection has been described in groundwater monitoring literature since the mid-1980s with a defined methodology being accepted by the U.S. EPA in 1995. These protocols are summarized below as adopted by MPWMD staff:

1. **Flow rate**

The flow rate used during purging must be low enough to avoid increasing the water turbidity. The following measures should be taken to determine the appropriate flow rate: (a) The flow rate shall be determined for each well, based on the hydraulic performance of the well; (b) The flow must be adjusted to obtain stabilization of the water level in the well as quickly as possible; (c) The maximum flow rate used should not exceed 1 liter per minute (0.26 gpm); (d) Once established, this rate should be reproduced with each subsequent sampling event; (e) If a significant change in initial water level occurs between events, it may be necessary to re-establish the optimum flow rate at each sampling event.

2. **Measurement of water level and drawdown**

Measurement of the water level in the well during purging is important when establishing the optimum flow rate for purging. The goal is to achieve a stabilized pumping water level as quickly as possible with minimal drawdown, to avoid stressing the formation and mobilizing solids, and to obtain stabilized indicator parameters in the shortest time possible.

3. **Measurement of indicator parameters**

Continuous monitoring of water-quality indicator parameters is used to determine when purging is completed and sampling should begin. Measurement of indicator parameters (dissolved oxygen content, redox potential, specific conductance, temperature and pH) is required. This is most easily performed using an in-line flow cell (closed) system attached directly to the pump discharge tubing. For turbidity measurement, a separate field nephelometer should be used.

If portable systems are used, they must be placed carefully into the well and lowered into the screen zone as slowly as possible. Placement of the portable pump can disturb the groundwater flow conditions resulting in non-equilibrium conditions. As a result, longer purge times and greater purge volumes may be necessary to achieve indicator parameter stabilization. In general, this may require that after installation, the portable pump should remain in place for a minimum of 1-2 hours to allow settling of solids and re-establishment of horizontal flow through the screen zone. If initial turbidity readings are excessive (>50 NTU), pumping should cease and the well should rest for another 1-2 hours before initiating pumping again. In wells set in very fine-grained formations, longer waiting periods may be required. Continuous water-level measurement devices
are preferred, such as down-hole pressure transducers, but electronic water-level tapes can be used. The devices used must be capable of measuring to 0.01-foot precision.

4. Sample Collection

Water samples for laboratory analyses must be collected before water has passed through the flow-through cell (use a by-pass assembly or disconnect cell to obtain sample). VOC samples should be collected first and directly into pre-preserved sample containers. All sample containers are filled by allowing the pump discharge to flow gently down the inside of the container with minimal turbulence. During purging and sampling, the tubing should remain filled with water so as to minimize possible changes in water chemistry upon contact with the atmosphere.

MPWMD Coastal Monitor Wells Water-Quality Results

Water chemistry analytical results for the samples collected during the first two quarters of WY 2011 are provided in Appendix 1. Sample analysis results are presented on the forms received directly from Monterey Bay Analytical Services (MBAS). The Watermaster Database is currently undergoing re-construction and a new table format for water quality will be used in future reports following completion of the database.

In general, the chemical data from WY 2011 first and second quarter samplings of these monitor wells do not show significant changes relative to the results provided in WY 2010, and are not indicative of seawater intrusion into the basin at the locations and depths of these monitor well completions. This is consistent with the conclusions drawn in the Water Year 2010 Seawater Intrusion Analysis Report (SIAR WY2010) prepared by Hydrometrics, LLC.

WATER-LEVEL DATA: BASIN MONITOR AND PRODUCER WELLS

Basin monitor wells and basin producer active and inactive wells with water-level data collected during the first two quarters of WY 2011 are provided in Appendix 2. The general locations of these wells are shown on Figure 5. The Watermaster has requested that producers collect and report “static”, i.e., non-pumping, water-level measurements. The purpose for this is so these measurements will more closely approximate ambient groundwater-level conditions, and facilitate the plotting of well water-level hydrographs. Occasionally, water-level measurements have been collected and reported while the well was in operation. In some cases, this may be due to the fact that the well can not be taken offline to collect a static water-level measurement because of pumping demand requirements. These occurrences have been recorded in the comments section of Appendix 2. These water-level data were collected primarily with manual water-level sounding devices by producers or by the MPWMD on behalf of the Watermaster.

These water-level data have been entered into the Watermaster database. The table in Appendix 2 was generated by obtaining a data dump from the Watermaster database and using the report feature in MS Access. This format was first used for the WY 2010 report and included additional
information relative to each well and its monitoring schedule. This will be the water-level format moving forward with the re-construction of the Watermaster Database.

It should be noted that the table in Appendix 2 includes the “reference-point elevations” that were surveyed in 2008 for each well, as part of work conducted for the Watermaster. The reference point elevations were established at the water-level data collection point at each wellhead. The reference point elevations are tied to the North American Vertical Datum of 1988 (NAVD88). The measurements in NAVD88 datum have been adjusted for the Watermaster’s use by subtracting 2.97 feet to conform to local Mean Sea Level (MSL) reference, based on data provided by the surveyor. The “depth to water” measurement at each well is subtracted from the reference-point elevation to obtain the “water elevation” relative to MSL, as shown in the column to the right of the “depth to water” column of the table.

Water-level hydrographs for the MPWMD monitor wells located in the Northern Coastal Sub Area and the Watermaster Sentinel wells are included in Appendix 3. The long-term hydrograph figures for the MPWMD monitor wells were generated to provide historical static water-level data for the wells with longer data records in the Seaside Groundwater Basin. The Sentinel well hydrographs were included to comply with monthly water-level reporting requirements.

Appendix 4 contains graphs of the continuous water level records collected from the Sentinel Wells for the first and second quarters of WY 2011.

CONCLUSIONS

- Due to actions by the Watermaster in WY 2009 to notify and remind basin producers of their obligations to collect required groundwater level and groundwater quality data from their wells, the availability of these data to assist in analysis of the basin’s groundwater resources has greatly improved compared to prior years.
- The chemical data from the first and second quarters of WY 2011 for the MPWMD dedicated coastal monitor wells do not show significant changes relative to previous samplings, and are not indicative of seawater intrusion into the basin at the locations and depths of these monitor wells. This conclusion continues to be supported by work completed last year for the Watermaster as documented in the WY 2010 Seawater Intrusion Analysis Report prepared by HydroMetrics, LLC.
- Based on the long-term water-level hydrographs for coastal monitor wells presented in Appendix 3, the trend of declining groundwater levels is continuing in the deeper Santa Margarita aquifer monitor wells, whereas groundwater levels have generally stabilized, and in a few cases displayed an overall increase in the shallower Paso Robles aquifer.

RECOMMENDATIONS

- The newly-initiated water-quality sampling methodology (i.e., the low-flow sampling method) should continue to be employed during the upcoming year. Based on the experience and water-quality record generated by this collection method during the next
year, consideration should be given to altering (i.e., reducing) the sampling frequency of selected quarterly monitor wells that continue to exhibit stable water-quality results. Where feasible, water quality at selected locations may be supplemented with continuous water-quality dataloggers to offset the reduction in sample collection frequency.

- Deploying dedicated low-flow sampling equipment in the quarterly water-quality monitoring wells should be continued. Dedicated sampling equipment left in the monitoring wells greatly reduces staff resources required to obtain quarterly water-quality samples and results in an overall cost reduction in the long run.

- Given that the geophysical and water-quality data that have been collected since the installation of the Watermaster’s coastal Sentinel Wells in 2007 have not shown any emerging trends or significant variations since this monitoring began, it is recommended that the frequency of induction logging at these sites continue to be collected semi-annually; this reduction in frequency from former quarterly monitoring will not unduly compromise the utility of the monitoring program.

- Groundwater quality samples should be obtained from the Camp Huffman well during the fourth quarter of WY 2011 for comparison to the samples collected immediately following well construction.
Table 1. Summary of Well Completions, MPWMD Coastal Seaside Basin Watermaster Well.

<table>
<thead>
<tr>
<th>Site</th>
<th>Well Name</th>
<th>Location Description</th>
<th>Well Number</th>
<th>Date Drilled</th>
<th>DWR Drillers Log</th>
<th>Hole Depth (feet)</th>
<th>Well Depth (feet)</th>
<th>Screened Interval (feet)</th>
<th>Strata Seal (feet)</th>
<th>Casing Type</th>
<th>Geologic Unit</th>
<th>E-Log Elevation (feet AMSL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC</td>
<td>former MSC mine north of Playa Ave. and west of Hwy. 1</td>
<td></td>
</tr>
<tr>
<td>MSC-Shallow</td>
<td>approx. 10' S of north property line</td>
<td>IS/ES-11N4</td>
<td>5/25/1990</td>
<td>33841</td>
<td>720</td>
<td>695</td>
<td>490 - 680</td>
<td>95 - 275</td>
<td>2" pvc</td>
<td>QTp</td>
<td></td>
<td>80.1</td>
</tr>
<tr>
<td>MSC-Deep</td>
<td>approx. 7' E of MSC-Shallow</td>
<td>IS/ES-11N2</td>
<td>5/25/1990</td>
<td>338425</td>
<td>920</td>
<td>865</td>
<td>810 - 850</td>
<td>725 - 775</td>
<td>2" pvc</td>
<td>Tsm</td>
<td>yes</td>
<td>80.29</td>
</tr>
<tr>
<td>PCA WEST</td>
<td>former PCA mine W of Hwy. 1</td>
<td></td>
</tr>
<tr>
<td>PCA-W Shallow</td>
<td>approx. 200' SE of ocean bluff</td>
<td>IS/ES-15F1</td>
<td>3/28/1990</td>
<td>338400</td>
<td>600</td>
<td>585</td>
<td>525 - 575</td>
<td>120 - 150</td>
<td>2" pvc</td>
<td>QTp</td>
<td>- -</td>
<td>64.22</td>
</tr>
<tr>
<td>PCA-W Deep</td>
<td>approx. 50' E of PCA-W Shallow</td>
<td>IS/ES-15F2</td>
<td>3/90</td>
<td>338401</td>
<td>900</td>
<td>885</td>
<td>825 - 875</td>
<td>760 - 790</td>
<td>2" pvc</td>
<td>Tsm</td>
<td>yes</td>
<td>65.10</td>
</tr>
<tr>
<td>PCA EAST</td>
<td>vacant lot NE of Seaside High baseball field</td>
<td></td>
</tr>
<tr>
<td>PCA-E Shallow</td>
<td>approx. 300' E Monterey Rd, 50' N fence</td>
<td>IS/ES-15K5</td>
<td>4/16/1990</td>
<td>338402</td>
<td>863</td>
<td>410</td>
<td>350 - 400</td>
<td>110 - 150</td>
<td>2" pvc</td>
<td>QTp</td>
<td>- -</td>
<td>68.51</td>
</tr>
<tr>
<td>PCA-E Deep</td>
<td>(same borehole as shallow well)</td>
<td>IS/ES-15K4</td>
<td>4/16/1990</td>
<td>338402</td>
<td>863</td>
<td>710</td>
<td>650 - 700</td>
<td>580 - 620</td>
<td>2" pvc</td>
<td>Tsm</td>
<td>yes</td>
<td>68.54</td>
</tr>
<tr>
<td>ORD TERRACE</td>
<td>Ord Terrace School property south of Ord Grove Ave.</td>
<td></td>
</tr>
<tr>
<td>OT-Shallow</td>
<td>1700 block Ord Grove Ave.</td>
<td>IS/ES-23Ca</td>
<td>8/5/1999</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0 - 260</td>
<td>2" pvc</td>
<td>upper Tsm</td>
<td>- -</td>
<td>228.65</td>
</tr>
<tr>
<td>OT-Deep</td>
<td>(same borehole as shallow well)</td>
<td>IS/ES-23Cb</td>
<td>8/5/1999</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0 - 260</td>
<td>2" pvc</td>
<td>lower Tsm</td>
<td>yes</td>
<td>228.63</td>
</tr>
<tr>
<td>MPWMD # FO-09</td>
<td>E of Hwy. 1, SE of Okinawa Rd.</td>
<td></td>
</tr>
<tr>
<td># 9-Shallow</td>
<td>50' east of utility service rd.</td>
<td>IS/ES-11Pb</td>
<td>8/16/1994</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1100 - 1300</td>
<td>2" pvc</td>
<td>QTp (?)</td>
<td>- -</td>
<td>18.89</td>
</tr>
<tr>
<td># 9-Deep</td>
<td>(same borehole as shallow well)</td>
<td>IS/ES-11Pb</td>
<td>8/16/1994</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1100 - 1300</td>
<td>2" pvc</td>
<td>Tsm (?)</td>
<td>yes</td>
<td>18.85</td>
</tr>
<tr>
<td>MPWMD # FO-10</td>
<td>south of Light Fighter Drive, behind Barker Theater Building</td>
<td></td>
</tr>
<tr>
<td># 10-Shallow</td>
<td>20' north of access road curb</td>
<td>IS/ES-12Fa</td>
<td>9/3/1996</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1500 - 1800</td>
<td>2" pvc</td>
<td>QTp (?)</td>
<td>- -</td>
<td>200.85</td>
</tr>
<tr>
<td># 10-Deep</td>
<td>(same borehole as shallow well)</td>
<td>IS/ES-12Fc</td>
<td>9/3/1996</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1500 - 1800</td>
<td>2" pvc</td>
<td>Tsm (?)</td>
<td>yes</td>
<td>201.03</td>
</tr>
</tbody>
</table>

NOTES:
1. Official State well numbers end with a numeral; unofficial MPWMD well numbers end with a small case letter.
2. Geologic Unit refers to the unit adjacent to the screened interval: QTp = Paso Robles Formation; Tsm = Santa Margarita Sandstone.
3. Elevation refers to the water level reference point elevation surveyed by Central Coast Surveyors. For additional information, see "Documentation of 2008 Well Elevation Surveys", MPWMD Seaside Basin Watermaster Memorandum 2008-05.
5. Well completion data at site PCA West and PCA East are documented in "Hydrogeologic Investigation, PCA Well Aquifer Test", SGD, July 1990.
8. Two dashes (i.e., "- -") indicate multiple screened intervals.
9. Three dashes (i.e., "- - -") indicate not applicable or not available.
Figure 1. Location of Weather Station KMRY and Average Annual Rainfall for the Seaside Groundwater Basin, Seaside, CA

Datasources: Rainfall Totals - Monterey County Photobase - AMBAG 2005

Locations are approximate based on MPWMD files.
Figure 2. Daily and Cumulative Rainfall for Water Year 2011 recorded at Weather Underground Weather Station KMRY, Seaside, California
Figure 3. Seaside Groundwater Basin Watermaster Monitoring Well Network, Seaside, CA

Datasources: Rainfall Totals - Monterey County Photobase - AMBAG 2005

Locations are approximate based on MPWMD files.
Fuel Source (Compressed Gas) → Pump Control → Flow Cell → Electric Wire Sounder

Air injected down well to bladder pump → Water Discharge

Water Quality Monitoring (pH, temp, Dissolved Oxygen, Conductivity) and Sample Collection

Bladder Pump

Droptube and Intake Assembly

Laminar Groundwater Flow through Well Screens

Flow Cell

Fuel Source

Pump Control

Figure 4. Low Flow Groundwater Sampling System
Presented in Cartoon and Photograph
Figure 5. Seaside Groundwater Basin Watermaster Wells by Category, Seaside, CA
Appendix 1

Seaside Basin Groundwater Quality Monitoring Results

First and Second Quarters of WY 2011
Sample Description: PCA West Deep

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO₃)</td>
<td>2320B</td>
<td>mg/L</td>
<td>270</td>
<td>2</td>
<td>10/4/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>10/1/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.05</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.29</td>
<td>0.05</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>82</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>136</td>
<td>1</td>
<td>250</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.19</td>
<td>0.10</td>
<td>2.0</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>2340B</td>
<td>mg/L</td>
<td>262</td>
<td>10</td>
<td>10/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>109</td>
<td>10</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>14</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>181</td>
<td>50</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO₃</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>7.3</td>
<td>9/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5.3</td>
<td>0.1</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation %</td>
<td>94%</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation %</td>
<td>3</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation %</td>
<td>100%</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.56</td>
<td>10/4/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>120</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>1063</td>
<td>1</td>
<td>900</td>
<td>9/28/2010</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>36</td>
<td>1</td>
<td>250</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>600</td>
<td>10</td>
<td>500</td>
<td>9/30/2010</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.91</td>
<td>E</td>
<td>0.20</td>
<td>10/7/2010</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: [Signature]

David Holland, Laboratory Director

Notes:
- mg/L: Milligrams per liter (=ppm)
- ug/L: Micrograms per liter (=ppb)
- PQL: Practical Quantitation Limit
- H = Analyzed outside of hold time
- E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
- D = Method deviates from standard method due to insufficient sample for MS/MSD
Sample Description: PCA West Shallow

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>78</td>
<td>2</td>
<td>10/4/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>10/1/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.07</td>
<td>0.05</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>19</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>38</td>
<td>250</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.07</td>
<td>0.10</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>68</td>
<td>10</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>309</td>
<td>10</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>Not Detected</td>
<td>10</td>
<td>50</td>
<td>9/28/2010</td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>6.7</td>
<td>9/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>2.5</td>
<td>0.1</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>92%</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>1</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>94%</td>
<td>10/4/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.62</td>
<td>10/4/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>36</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>317</td>
<td>1</td>
<td>900</td>
<td>9/28/2010</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>14</td>
<td>1</td>
<td>250</td>
<td>9/29/2010</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>198</td>
<td>10</td>
<td>500</td>
<td>9/30/2010</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.62</td>
<td>E</td>
<td>0.20</td>
<td>10/7/2010</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: [Signature]

David Holland, Laboratory Director

Note:
- mg/L: Milligrams per liter (=ppm)
- ug/L: Micrograms per liter (=ppb)
- PQL: Practical Quantitation Limit
- H = Analyzed outside of hold time
- E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
- D = Method deviates from standard method due to insufficient sample for MS/MSD
Sample Description: MSC Deep

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO₃)</td>
<td>2320B</td>
<td>mg/L</td>
<td>290</td>
<td>2</td>
<td></td>
<td></td>
<td>10/4/2010</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.05</td>
<td></td>
<td></td>
<td>10/1/2010</td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.05</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.25</td>
<td>0.05</td>
<td></td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>80</td>
<td>0.5</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>118</td>
<td>1</td>
<td>250</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.16</td>
<td>0.10</td>
<td>2.0</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>2340B</td>
<td>mg/L</td>
<td>249</td>
<td>10</td>
<td></td>
<td></td>
<td>10/28/2010</td>
</tr>
<tr>
<td>Iron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>255</td>
<td>1</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>12</td>
<td>0.5</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA200.7</td>
<td>ug/L</td>
<td>94</td>
<td>10</td>
<td>50</td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Nitrate as NO₃</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5.0</td>
<td>0.1</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>96%</td>
<td></td>
<td></td>
<td></td>
<td>10/28/2010</td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>10/28/2010</td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>101%</td>
<td></td>
<td></td>
<td></td>
<td>10/28/2010</td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/4/2010</td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>116</td>
<td>0.5</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>1007</td>
<td>1</td>
<td>900</td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>24</td>
<td>1</td>
<td>250</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>568</td>
<td>10</td>
<td>500</td>
<td></td>
<td>9/30/2010</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>1.5</td>
<td>E</td>
<td>0.20</td>
<td></td>
<td>10/7/2010</td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L : Micrograms per liter (=ppb) PQL : Practical Quantitation Limit
H = Analyzed outside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
D = Method deviates from standard method due to insufficient sample for MS/MSD
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>72</td>
<td>2</td>
<td></td>
<td></td>
<td>10/4/2010</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>10/1/2010</td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.12</td>
<td>0.05</td>
<td></td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>19</td>
<td>0.5</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>42</td>
<td>1</td>
<td>250</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.10</td>
<td>2.0</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>68</td>
<td>10</td>
<td></td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>153</td>
<td>10</td>
<td></td>
<td></td>
<td>10/12/2010</td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5</td>
<td>0.5</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>61</td>
<td>10</td>
<td>50</td>
<td></td>
<td>10/12/2010</td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>3.4</td>
<td>0.1</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
<td>10/28/2010</td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>10/28/2010</td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
<td>10/4/2010</td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td></td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td>10/4/2010</td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>35</td>
<td>0.5</td>
<td></td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>312</td>
<td>1</td>
<td>900</td>
<td></td>
<td>9/28/2010</td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>16</td>
<td>1</td>
<td>250</td>
<td></td>
<td>9/29/2010</td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>193</td>
<td>10</td>
<td>500</td>
<td></td>
<td>9/30/2010</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>1.8</td>
<td>E</td>
<td>0.20</td>
<td></td>
<td>10/7/2010</td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: [Signature]

David Holland, Laboratory Director
Sample Description: FO-09 Deep

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>120</td>
<td>2</td>
<td>10/4/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>0.18</td>
<td>0.05</td>
<td>10/1/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.10</td>
<td>9/29/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>27</td>
<td>9/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>59</td>
<td>250</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.10</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>84</td>
<td>10</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>2890</td>
<td>10</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>4</td>
<td>9/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>26</td>
<td>50</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>45</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>9/29/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>6.4</td>
<td>9/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>3.8</td>
<td>1</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>100%</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>0</td>
<td>10/28/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>100%</td>
<td>10/4/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.56</td>
<td>10/4/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>59</td>
<td>0.5</td>
<td>9/28/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>435</td>
<td>1</td>
<td>900</td>
<td>9/28/2010</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>14</td>
<td>1</td>
<td>250</td>
<td>9/28/2010</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>245</td>
<td>10</td>
<td>500</td>
<td>9/30/2010</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.67</td>
<td>E</td>
<td>0.20</td>
<td>10/7/2010</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by:

David Holland, Laboratory Director
Sample Description: FO-09 Shallow

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>73</td>
<td>2</td>
<td>1/10</td>
<td>10/4/2010</td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.05</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1/10/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.12</td>
<td>0.05</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>27</td>
<td>0.5</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>49</td>
<td>1</td>
<td>250</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.10</td>
<td>2.0</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>84</td>
<td>10</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>52</td>
<td>10</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>4</td>
<td>0.5</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA200.7</td>
<td>ug/L</td>
<td>Not Detected</td>
<td>10</td>
<td>50</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>1</td>
<td>1</td>
<td>45</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.0</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.0</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>7.4</td>
<td>1/10/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>3.7</td>
<td>0.1</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>91%</td>
<td>1/10/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>3</td>
<td>1/10/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>97%</td>
<td>1/10/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.62</td>
<td>1/10/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>36</td>
<td>0.5</td>
<td>1/10/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>344</td>
<td>1</td>
<td>900</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>13</td>
<td>1</td>
<td>250</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>214</td>
<td>10</td>
<td>500</td>
<td>1/10/2010</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.55</td>
<td>E</td>
<td>0.20</td>
<td>1/10/2010</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: [Signature]

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)
ug/L: Micrograms per liter (=ppb)
PQL: Practical Quantitation Limit
H = Analyzed outside of hold time
E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
D = Method deviates from standard method due to insufficient sample for MS/MSD
General Chemistry Quality Control Report

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC</th>
<th>Limits</th>
<th>RPD Limit</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch: A009749</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (A009749-BLK1) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ND</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank Spike (A009749-BS1) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>10</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td>80-120</td>
<td></td>
</tr>
<tr>
<td>Blank Spike Dup (A009749-BSD1) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>10</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>80-120</td>
<td>0.7</td>
</tr>
<tr>
<td>Source (A0J0078-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (A009749-MS1) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>11</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>1.6</td>
<td>99</td>
<td>80-120</td>
<td></td>
</tr>
<tr>
<td>Source (A0J0166-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (A009749-MS2) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>11</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>1.2</td>
<td>99</td>
<td>80-120</td>
<td></td>
</tr>
<tr>
<td>Source (A0J0078-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (A009749-MSD1) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>12</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>1.6</td>
<td>99</td>
<td>80-120</td>
<td>0.3</td>
</tr>
<tr>
<td>Source (A0J0166-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (A009749-MSD2) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>11</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>1.2</td>
<td>98</td>
<td>80-120</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Analyst: SAB
Prepared & Analyzed: 10/07/2010
Sample Description: MPWMD, SBWM#4 715'

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>206</td>
<td>2</td>
<td>1/26/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>1.2</td>
<td>0.05</td>
<td>1/31/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.05</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.27</td>
<td>0.05</td>
<td>1/27/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>68</td>
<td>0.5</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>111</td>
<td>1</td>
<td>250</td>
<td>1/27/2011</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.10</td>
<td>0.10</td>
<td>2.0</td>
<td>1/27/2011</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>207</td>
<td>10</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>2203</td>
<td>10</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>9</td>
<td>0.5</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>71</td>
<td>10</td>
<td>50</td>
<td>2/8/2011</td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>45</td>
<td>1/27/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>1/27/2011</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1/27/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>7.7</td>
<td></td>
<td>1/25/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>6.1</td>
<td>0.1</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>93%</td>
<td></td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>5</td>
<td></td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>102%</td>
<td></td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td></td>
<td>0.60</td>
<td></td>
<td>1/28/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>101</td>
<td>0.5</td>
<td>2/8/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>853</td>
<td>1</td>
<td>900</td>
<td>1/25/2011</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>31</td>
<td>1</td>
<td>250</td>
<td>1/27/2011</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>515</td>
<td>10</td>
<td>500</td>
<td>1/26/2011</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.62 E</td>
<td>0.20</td>
<td>2/7/2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L: Micrograms per liter (=ppb) PQL: Practical Quantitation Limit
H = Analyzed outside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
D = Method deviates from standard method due to insufficient sample for MS/MSD
Sample Description: MPWMD, SBWM#4 900'

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>275</td>
<td>2</td>
<td></td>
<td></td>
<td>1/26/2011</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>0.12</td>
<td>0.05</td>
<td>1/31/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>0.28</td>
<td>0.05</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.65</td>
<td>0.05</td>
<td></td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>82</td>
<td>0.5</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>230</td>
<td>1</td>
<td>250</td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.18</td>
<td>0.10</td>
<td>2.0</td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>279</td>
<td>10</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>955</td>
<td>10</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>18</td>
<td>0.5</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>93</td>
<td>10</td>
<td>50</td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td>1/25/2011</td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>8.2</td>
<td>0.1</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td></td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td>1/28/2011</td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>190</td>
<td>0.5</td>
<td></td>
<td></td>
<td>2/8/2011</td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>1407</td>
<td>1</td>
<td>900</td>
<td></td>
<td>1/25/2011</td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>33</td>
<td>1</td>
<td>250</td>
<td></td>
<td>1/27/2011</td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>800</td>
<td>10</td>
<td>500</td>
<td></td>
<td>1/26/2011</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.91</td>
<td>E</td>
<td>0.20</td>
<td></td>
<td>2/7/2011</td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by:

David Holland, Laboratory Director
General Chemistry Quality Control Report

Batch: A101417
Analyst: SAB
Prepared: 02/07/2011

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC</th>
<th>RPD Limit</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (A101417-BLK1) SM 5310 C - Quality Control</td>
<td>ND</td>
<td>0.20</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02/07/11</td>
</tr>
<tr>
<td>Blank Spike (A101417-BS1) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>102</td>
<td>80-120</td>
<td></td>
<td>02/07/11</td>
</tr>
<tr>
<td>Blank Spike Dup (A101417-BSD1) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>102</td>
<td>80-120</td>
<td>0</td>
<td>02/07/11</td>
</tr>
<tr>
<td>Matrix Spike (A101417-MS1) SM 5310 C - Quality Control</td>
<td>12</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>1.6</td>
<td>101</td>
<td>80-120</td>
<td>02/07/11</td>
</tr>
<tr>
<td>Matrix Spike (A101417-MS2) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>ND</td>
<td>100</td>
<td>80-120</td>
<td>02/07/11</td>
</tr>
<tr>
<td>Matrix Spike Dup (A101417-MSD1) SM 5310 C - Quality Control</td>
<td>12</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>1.6</td>
<td>99</td>
<td>80-120</td>
<td>02/07/11</td>
</tr>
<tr>
<td>Matrix Spike Dup (A101417-MSD2) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>ND</td>
<td>100</td>
<td>80-120</td>
<td>02/07/11</td>
</tr>
</tbody>
</table>
Sample Description: PCA West (S)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>78</td>
<td>2</td>
<td></td>
<td></td>
<td>5/5/2011</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.11</td>
<td>0.05</td>
<td></td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>20</td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>43</td>
<td>1</td>
<td>250</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.10</td>
<td>2.0</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>71</td>
<td>10</td>
<td></td>
<td></td>
<td>5/4/2011</td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>435</td>
<td>10</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5</td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>Not Detected</td>
<td>10</td>
<td>50</td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>6.5</td>
<td>1</td>
<td></td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>2.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>93%</td>
<td></td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>92%</td>
<td></td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.65</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>33</td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>316</td>
<td>1</td>
<td>900</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>8</td>
<td>1</td>
<td>250</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>205</td>
<td>10</td>
<td>500</td>
<td></td>
<td>5/4/2011</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>1.1</td>
<td>E</td>
<td>0.20</td>
<td></td>
<td>5/4/2011</td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by:

David Holland, Laboratory Director
Sample Description: PCA West (D)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>257</td>
<td>2</td>
<td>5/5/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>0.07</td>
<td>0.05</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.42</td>
<td>0.05</td>
<td>4/28/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>83</td>
<td>0.5</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>163</td>
<td>1</td>
<td>250</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.21</td>
<td>0.10</td>
<td>2.0</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>248</td>
<td>10</td>
<td>5/6/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>69</td>
<td>10</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>10</td>
<td>0.5</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>167</td>
<td>10</td>
<td>50</td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Nitrate as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>4/28/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>7.3</td>
<td>4/28/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>50</td>
<td>0.1</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>97%</td>
<td>5/6/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>3</td>
<td>5/6/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>103%</td>
<td>5/6/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.57</td>
<td>5/6/2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>112</td>
<td>0.5</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>1078</td>
<td>1</td>
<td>900</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>34</td>
<td>1</td>
<td>250</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>615</td>
<td>10</td>
<td>500</td>
<td>5/4/2011</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.90</td>
<td>E</td>
<td>0.20</td>
<td>5/4/2011</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: [Signature]

David Holland, Laboratory Director
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>90</td>
<td>2</td>
<td>5/5/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>0.66</td>
<td>0.05</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.17</td>
<td>0.05</td>
<td>4/28/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>26</td>
<td>0.5</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>65</td>
<td>1</td>
<td>250</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.08</td>
<td>0.10</td>
<td>2.0</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>81</td>
<td>10</td>
<td>5/4/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>1038</td>
<td>10</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium, Total</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>4</td>
<td>0.5</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>2.0</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>6.6</td>
<td></td>
<td>4/28/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>3.5</td>
<td>0.1</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>93%</td>
<td></td>
<td>5/6/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>2</td>
<td></td>
<td>5/6/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>97%</td>
<td></td>
<td>5/6/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.61</td>
<td></td>
<td></td>
<td>5/6/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>53</td>
<td>0.5</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>415</td>
<td>1</td>
<td>900</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>11</td>
<td>1</td>
<td>250</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>254C</td>
<td>mg/L</td>
<td>254</td>
<td>10</td>
<td>500</td>
<td>5/4/2011</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.86</td>
<td>E</td>
<td>0.20</td>
<td>5/4/2011</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by: David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)
ug/L: Micrograms per liter (=ppb)
PQL: Practical Quantitation Limit
H = Analyzed outside of hold time
E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
D = Method deviates from standard method due to insufficient sample for MS/MSD
Sample Description: MSC (S)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO3)</td>
<td>2320B</td>
<td>mg/L</td>
<td>67</td>
<td>2</td>
<td></td>
<td>5/5/2011</td>
<td></td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.10</td>
<td>0.05</td>
<td></td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>20</td>
<td>0.5</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>42</td>
<td>1</td>
<td>250</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.08</td>
<td>0.10</td>
<td>2.0</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Hardness (as CaCO3)</td>
<td>2340B</td>
<td>mg/L</td>
<td>71</td>
<td>10</td>
<td></td>
<td>5/4/2011</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>17</td>
<td>10</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5</td>
<td>0.5</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>18</td>
<td>10</td>
<td>50</td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>5.5</td>
<td></td>
<td></td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>2.7</td>
<td>0.1</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>91%</td>
<td></td>
<td></td>
<td>5/6/2011</td>
<td></td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>2</td>
<td></td>
<td></td>
<td>5/6/2011</td>
<td></td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>95%</td>
<td></td>
<td></td>
<td>5/6/2011</td>
<td></td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td></td>
<td>0.62</td>
<td></td>
<td></td>
<td>5/9/2011</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>32</td>
<td>0.5</td>
<td></td>
<td>5/3/2011</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>303</td>
<td>1</td>
<td>900</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>11</td>
<td>1</td>
<td>250</td>
<td>4/28/2011</td>
<td></td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>188</td>
<td>10</td>
<td>500</td>
<td>5/6/2011</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>0.59</td>
<td>E</td>
<td>0.20</td>
<td>5/4/2011</td>
<td></td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L : Micrograms per liter (=ppb) PQL : Practical Quantitation Limit
H = Analyzed outside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.
D = Method deviates from standard method due to insufficient sample for MS/MSD
Sample Description: MSC (D)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Unit</th>
<th>Result</th>
<th>Qual</th>
<th>PQL</th>
<th>MCL</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (as CaCO₃)</td>
<td>2320B</td>
<td>mg/L</td>
<td>271</td>
<td>2</td>
<td></td>
<td></td>
<td>5/5/2011</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>4500NH3 D</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>0.09</td>
<td>0.05</td>
<td>5/3/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.30</td>
<td>0.05</td>
<td></td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Calcium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>78</td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>134</td>
<td>1</td>
<td>250</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Fluoride</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>0.12</td>
<td>0.10</td>
<td>2.0</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>2340B</td>
<td>mg/L</td>
<td>252</td>
<td>10</td>
<td></td>
<td></td>
<td>5/4/2011</td>
</tr>
<tr>
<td>Iron</td>
<td>EPA 200.7</td>
<td>ug/L</td>
<td>279</td>
<td>10</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Magnesium, Total</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>14</td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Nitrate as NO3</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>1</td>
<td>45</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Nitrite as Nitrogen</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>o-Phosphate-P</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>Not Detected</td>
<td>0.05</td>
<td></td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>pH (Laboratory)</td>
<td>4500-H+B</td>
<td>STD. Units</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Potassium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>5.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>QC Anion Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>QC Anion-Cation Balance</td>
<td>Calculation</td>
<td>%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>QC Cation Sum x 100</td>
<td>Calculation</td>
<td>%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>QC Ratio TDS/SEC</td>
<td>Calculation</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/9/2011</td>
</tr>
<tr>
<td>Sodium</td>
<td>EPA200.7</td>
<td>mg/L</td>
<td>111</td>
<td>0.5</td>
<td></td>
<td></td>
<td>5/3/2011</td>
</tr>
<tr>
<td>Specific Conductance (E.C)</td>
<td>2510B</td>
<td>umhos/cm</td>
<td>996</td>
<td>1</td>
<td>900</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA300.0</td>
<td>mg/L</td>
<td>12</td>
<td>1</td>
<td>250</td>
<td></td>
<td>4/28/2011</td>
</tr>
<tr>
<td>Total Diss. Solids</td>
<td>2540C</td>
<td>mg/L</td>
<td>560</td>
<td>10</td>
<td>500</td>
<td></td>
<td>5/6/2011</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>SM5310C</td>
<td>mg/L</td>
<td>9.5</td>
<td>E</td>
<td>0.20</td>
<td></td>
<td>5/4/2011</td>
</tr>
</tbody>
</table>

Sample Comments:

Report Approved by:

David Holland, Laboratory Director
General Chemistry Quality Control Report

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC</th>
<th>RPD Limit</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (A105164-BLK1) SM 5310 C - Quality Control</td>
<td></td>
<td></td>
<td>mg/L</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05/04/11</td>
</tr>
<tr>
<td>Blank Spike (A105164-BS1) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>101</td>
<td>80-120</td>
<td>020</td>
<td>05/04/11</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank Spike Dup (A105164-BSD1) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>101</td>
<td>80-120</td>
<td>020</td>
<td>05/04/11</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (A105164-MS1) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>0.32</td>
<td>97</td>
<td>80-120</td>
<td>05/04/11</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (A105164-MS2) SM 5310 C - Quality Control</td>
<td>11</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>1.0</td>
<td>99</td>
<td>80-120</td>
<td>05/04/11</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (A105164-MSD1) SM 5310 C - Quality Control</td>
<td>10</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>0.32</td>
<td>97</td>
<td>80-120</td>
<td>05/04/11</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (A105164-MSD2) SM 5310 C - Quality Control</td>
<td>11</td>
<td>0.20</td>
<td>mg/L</td>
<td>10</td>
<td>1.0</td>
<td>99</td>
<td>80-120</td>
<td>05/04/11</td>
</tr>
</tbody>
</table>

Batch: A105164

Analyst: SAB

Prepared: 05/04/2011
Certificate of Analysis

05/09/2011

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.
- Sample(s) received, prepared, and analyzed within the method specified criteria unless otherwise noted within this report.
- The results relate only to the samples analyzed in accordance with test(s) requested by the client on the Chain of Custody document. Any analytical quality control exceptions to method criteria that are to be considered when evaluating these results have been flagged and are defined in the data qualifiers section.
- All results are expressed on wet weight basis unless otherwise specified.
- All positive results for EPA Methods 504.1, 502.2, and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Results contained in this analytical report must be reproduced in its entirety.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- BSK Analytical Laboratories certifies that the test results contained in this report meet all requirements of the NELAC Standards for applicable certified drinking water chemistry analyses unless qualified or noted in the Case Narrative.
- Analytical data contained in this report may be used for regulatory purposes to meet the requirements of the Federal or State drinking water, wastewater, and hazardous waste programs.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) - Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals. Samples submitted to the laboratory have been analyzed outside of this holding time requirement.
- * - This is not a NELAP accredited analyte.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- (2) The digestion used to produce this result deviated from EPA 200.2 by excluding hydrochloric acid in order to produce acceptable recoveries for affected metals.
- (2C) Result reported from secondary analytical column.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.

Certifications:

State of California - CDPH - ELAP 1180
State of California - CDPH - NELAP 04227CA
State of New Mexico - NMED-DWB
State of Nevada - NDEP CA000792009A

Definitions and Flags for Data Qualifiers

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>M</th>
<th>RL</th>
<th>ND</th>
<th>pCi/L</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td>Milligrams/Liter (ppm)</td>
<td>Method Detection Limit</td>
<td>Reporting Limit</td>
<td>None Detected at RL</td>
<td>Picocuries per Liter</td>
<td>Non-Reportable</td>
</tr>
<tr>
<td>mg/Kg</td>
<td>Milligrams/Kilogram (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>µg/L</td>
<td>Micrograms/Liter (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>µg/Kg</td>
<td>Micrograms/Kilogram (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percent Recovered (surrogates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2

Seaside Basin Groundwater Level Monitoring Results

First and Second Quarters of WY 2011
Groundwater Level Monitoring Data
for the Seaside Groundwater Basin
Water Year 2011 1st and 2nd Quarters
Assembled by MPWMD for the Seaside Watermaster

<table>
<thead>
<tr>
<th>Well Category</th>
<th>Subarea</th>
<th>Watermaster Well 151 Military</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>State Well No. 15S01E14N50 Owner: California American Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern Coastal Producer Screen: -</td>
</tr>
<tr>
<td>Date Measured</td>
<td>Reference Point</td>
<td>Depth to Water Static Water Level</td>
</tr>
<tr>
<td>9/30/2010</td>
<td>135.8</td>
<td>185</td>
</tr>
<tr>
<td>10/28/2010</td>
<td>135.8</td>
<td>180.5</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>135.8</td>
<td>177</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>135.8</td>
<td>175.0</td>
</tr>
<tr>
<td>1/27/2011</td>
<td>135.8</td>
<td>170.0</td>
</tr>
<tr>
<td>2/24/2011</td>
<td>135.8</td>
<td>173.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Watermaster Well 152 Target Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Well No. 15S01E22C50 Owner: DBO Development</td>
</tr>
<tr>
<td>Northern Coastal Producer Screen: 360 - 390 Aquifer: QTc/Tsm</td>
</tr>
<tr>
<td>Date Measured</td>
</tr>
<tr>
<td>10/28/2010</td>
</tr>
<tr>
<td>11/24/2010</td>
</tr>
<tr>
<td>12/31/2010</td>
</tr>
<tr>
<td>2/1/2011</td>
</tr>
<tr>
<td>3/1/2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Watermaster Well 153 Ord Grove #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Well No. 15S01E23B02 Owner: California American Water</td>
</tr>
<tr>
<td>Northern Coastal Producer Screen: - Aquifer: QTc/Tsm</td>
</tr>
<tr>
<td>Date Measured</td>
</tr>
<tr>
<td>9/30/2010</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Date Measured</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>9/30/2010</td>
</tr>
<tr>
<td>10/28/2010</td>
</tr>
<tr>
<td>11/24/2010</td>
</tr>
<tr>
<td>12/30/2010</td>
</tr>
<tr>
<td>1/27/2011</td>
</tr>
<tr>
<td>2/24/2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>56.02</td>
<td>162</td>
<td>-105.98</td>
<td>Well Running</td>
</tr>
<tr>
<td>10/28/2010</td>
<td>56.02</td>
<td>61</td>
<td>-4.98</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>56.02</td>
<td>164</td>
<td>-107.98</td>
<td>Well Running</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>56.02</td>
<td>53</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>56.02</td>
<td>52.0</td>
<td>4.02</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>56.02</td>
<td>51.0</td>
<td>5.02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>324.49</td>
<td>372</td>
<td>-47.51</td>
<td>Well Running</td>
</tr>
<tr>
<td>Date</td>
<td>Reference Point</td>
<td>Depth to Water</td>
<td>Static Water Level</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>9/30/2010</td>
<td>134.05</td>
<td>122</td>
<td>12.05</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>134.05</td>
<td>121</td>
<td>13.05</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>134.05</td>
<td>122</td>
<td>12.05</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>134.05</td>
<td>119</td>
<td>15.05</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>134.05</td>
<td>120.0</td>
<td>14.05</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>134.05</td>
<td>121.0</td>
<td>13.05</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 150 Cypress Pacific

<table>
<thead>
<tr>
<th>Date</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>50.23</td>
<td>46.63</td>
<td>3.60</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>50.23</td>
<td>46.60</td>
<td>3.63</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/31/2010</td>
<td>50.23</td>
<td>46.21</td>
<td>4.02</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 165 Public Works Corp. Yard

<table>
<thead>
<tr>
<th>Date</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>50.23</td>
<td>46.63</td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>50.23</td>
<td>46.60</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>50.23</td>
<td>46.21</td>
<td>4.02</td>
<td></td>
</tr>
</tbody>
</table>
Watermaster Well 167 Robinette -Design Ctr.
State Well No. 15S01E22Mc
Owner: City of Sand City

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>21.31</td>
<td>42.31</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>21.31</td>
<td>42.31</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>21.31</td>
<td>42.31</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>21.31</td>
<td>42.31</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>21.31</td>
<td>42.31</td>
<td>7.99</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 177 Plumas #4
State Well No. 15S01E27Jg
Owner: California American Water

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>161.48</td>
<td>123.0</td>
<td>38.48</td>
<td>Well Running</td>
</tr>
<tr>
<td>10/28/2010</td>
<td>161.48</td>
<td>121</td>
<td>40.48</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>161.48</td>
<td>122</td>
<td>39.48</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>161.48</td>
<td>119</td>
<td>42.48</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>161.48</td>
<td>110.6</td>
<td>50.88</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>161.48</td>
<td>112.0</td>
<td>49.48</td>
<td></td>
</tr>
</tbody>
</table>

Well Category: Producer
Subarea: Southern Inland

Watermaster Well 144 Laguna Seca Old No. 12
State Well No. 16S02E06Hb
Owner: Laguna Seca Resorts

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>161.48</td>
<td>123.0</td>
<td>38.48</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>161.48</td>
<td>121</td>
<td>40.48</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>161.48</td>
<td>119</td>
<td>42.48</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>161.48</td>
<td>110.6</td>
<td>50.88</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>161.48</td>
<td>112.0</td>
<td>49.48</td>
<td></td>
</tr>
<tr>
<td>Date Measured</td>
<td>Reference Point</td>
<td>Depth to Water</td>
<td>Static Water Level</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>10/31/2010</td>
<td>368.02</td>
<td>227.2</td>
<td>140.82</td>
<td></td>
</tr>
<tr>
<td>11/30/2010</td>
<td>368.02</td>
<td>223.3</td>
<td>144.72</td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>368.02</td>
<td>219.3</td>
<td>148.72</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>368.02</td>
<td>217.1</td>
<td>150.92</td>
<td></td>
</tr>
<tr>
<td>2/28/2011</td>
<td>368.02</td>
<td>214.9</td>
<td>153.12</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 204 New Paddock

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31/2011</td>
<td>359.69</td>
<td>218.943</td>
<td>140.75</td>
<td></td>
</tr>
<tr>
<td>2/28/2011</td>
<td>359.69</td>
<td>218.861</td>
<td>140.83</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 208 Main Gate

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31/2011</td>
<td>345.42</td>
<td>230.895</td>
<td>114.53</td>
<td></td>
</tr>
<tr>
<td>2/28/2011</td>
<td>345.42</td>
<td>230.905</td>
<td>114.52</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 209 Bishop #1 (west)

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>398.81</td>
<td>267</td>
<td>131.81</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>398.81</td>
<td>259</td>
<td>139.81</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>398.81</td>
<td>258</td>
<td>140.81</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>398.81</td>
<td>261</td>
<td>137.81</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>398.81</td>
<td>250.0</td>
<td>148.81</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>398.81</td>
<td>248.0</td>
<td>150.81</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 210 Bishop #2 (east)

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>418.34</td>
<td>253</td>
<td>165.34</td>
<td></td>
</tr>
<tr>
<td>Date Measured</td>
<td>Reference Point</td>
<td>Depth to Water</td>
<td>Static Water Level</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>10/28/2010</td>
<td>384.3</td>
<td></td>
<td></td>
<td>Well Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>384.3</td>
<td></td>
<td></td>
<td>Well Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>384.3</td>
<td></td>
<td></td>
<td>Well Book Lost</td>
</tr>
<tr>
<td>1/4/2011</td>
<td>384.3</td>
<td>269.81</td>
<td>114.49</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>384.3</td>
<td>224.42</td>
<td>159.88</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>384.3</td>
<td>219.52</td>
<td>164.78</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>294</td>
<td>239</td>
<td>55.00</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>294</td>
<td>329</td>
<td>-35.00</td>
<td>Well Running</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>294</td>
<td>205</td>
<td>89.00</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>294</td>
<td>195</td>
<td>99.00</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>294</td>
<td>194.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>294</td>
<td>189.0</td>
<td>105.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>307.59</td>
<td>221</td>
<td>86.59</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Reference Point</td>
<td>Depth to Water</td>
<td>Static Water Level</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>10/28/2010</td>
<td>307.59</td>
<td>292</td>
<td>15.59</td>
<td>Data Questionable</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>307.59</td>
<td>202</td>
<td>105.59</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>307.59</td>
<td>197</td>
<td>110.59</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>307.59</td>
<td>195.0</td>
<td>112.59</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>307.59</td>
<td>191.0</td>
<td>116.59</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 216 Ryan Ranch #8

State Well No. 16S01E01T54 Owner: California American Water
Monitored: Monthly
Monitored by: CAW
Aquifer: Tsm

<table>
<thead>
<tr>
<th>Date</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>306.86</td>
<td>221</td>
<td>85.86</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>306.86</td>
<td>218</td>
<td>88.86</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>306.86</td>
<td>200</td>
<td>106.86</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>306.86</td>
<td>197</td>
<td>109.86</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>306.86</td>
<td>195.0</td>
<td>111.86</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>306.86</td>
<td>192.0</td>
<td>114.86</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 226 Bay Ridge

State Well No. 16S02E09Cd Owner: California American Water
Monitored: Monthly
Monitored by: CAW
Aquifer: QTc/Tsm

<table>
<thead>
<tr>
<th>Date</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>545.92</td>
<td>377</td>
<td>168.92</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>545.92</td>
<td>373</td>
<td>172.92</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>545.92</td>
<td>375</td>
<td>170.92</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>545.92</td>
<td>407</td>
<td>138.92</td>
<td>Well Running</td>
</tr>
<tr>
<td>1/27/2011</td>
<td>545.92</td>
<td>398.0</td>
<td>147.92</td>
<td>Well Running</td>
</tr>
<tr>
<td>2/24/2011</td>
<td>545.92</td>
<td>403.0</td>
<td>142.92</td>
<td>Well Running</td>
</tr>
</tbody>
</table>

Well Category: Monitor
Subarea: Northern Coastal
Watermaster Well 101 MSC-Shallow

State Well No. 15S01E15N3 **Owner:** MPWMD
Aquifer: QTcNorthern Coastal Monitor
Screen: 490 - 680

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/2010</td>
<td>80.1</td>
<td>75.66</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>10/31/2010</td>
<td>80.1</td>
<td>75.79</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>80.1</td>
<td></td>
<td>Field Book Lost</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>80.1</td>
<td></td>
<td>Field Book Lost</td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>80.1</td>
<td>74.64</td>
<td>5.46</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>80.1</td>
<td>75.22</td>
<td>4.88</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 102 MSC-Deep

State Well No. 15S01E15N2 **Owner:** MPWMD
Aquifer: TsmNorthern Coastal Monitor
Screen: 810 - 850

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/2010</td>
<td>80.29</td>
<td>97.51</td>
<td>-17.22</td>
<td></td>
</tr>
<tr>
<td>10/31/2010</td>
<td>80.29</td>
<td>97.25</td>
<td>-16.96</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>80.29</td>
<td></td>
<td>Field Book Lost</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>80.29</td>
<td></td>
<td>Field Book Lost</td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>80.29</td>
<td>93.30</td>
<td>-13.01</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>80.29</td>
<td>91.50</td>
<td>-11.21</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 103 PCA-W Shallow

State Well No. 15S01E15F1 **Owner:** MPWMD
Aquifer: QTcNorthern Coastal Monitor
Screen: 525 - 575

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/2010</td>
<td>64.22</td>
<td>59.59</td>
<td>4.63</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 104 PCA-W Deep

State Well No. 15S01E15F2 **Owner:** MPWMD
Aquifer: TsmNorthern Coastal Monitor
Screen: 825 - 875

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/2010</td>
<td>65.18</td>
<td>85.79</td>
<td>-20.61</td>
<td></td>
</tr>
</tbody>
</table>
Watermaster Well 105 PCA-E (Multiple) Shallow

State Well No.: 15S01E15K5
Owner: MPWMD
Screen: 350 - 400

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/11/2010</td>
<td>68.51</td>
<td>63.52</td>
<td>4.99</td>
</tr>
<tr>
<td>11/5/2010</td>
<td>68.51</td>
<td>63.34</td>
<td>5.17</td>
</tr>
<tr>
<td>12/5/2010</td>
<td>68.51</td>
<td>63.16</td>
<td>5.35</td>
</tr>
<tr>
<td>1/4/2011</td>
<td>68.51</td>
<td>63.02</td>
<td>5.49</td>
</tr>
<tr>
<td>2/1/2011</td>
<td>68.51</td>
<td>62.63</td>
<td>5.88</td>
</tr>
<tr>
<td>3/1/2011</td>
<td>68.51</td>
<td>62.43</td>
<td>6.08</td>
</tr>
</tbody>
</table>

Watermaster Well 106 PCA-E (Multiple) Deep

State Well No.: 15S01E15K4
Owner: MPWMD
Screen: 650 - 700

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4/2011</td>
<td>68.54</td>
<td>87.40</td>
<td>-18.86</td>
</tr>
<tr>
<td>2/1/2011</td>
<td>68.54</td>
<td>85.30</td>
<td>-16.76</td>
</tr>
<tr>
<td>3/1/2011</td>
<td>68.54</td>
<td>80.61</td>
<td>-12.07</td>
</tr>
</tbody>
</table>

Watermaster Well 107 Ord Grove Test

State Well No.: 15S01E23B1
Owner: California American Water
Screen: 355 - 480

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2010</td>
<td>294.00</td>
<td>344.42</td>
<td>-50.42</td>
</tr>
<tr>
<td>1/27/2011</td>
<td>294.00</td>
<td>322.0</td>
<td>-28.00</td>
</tr>
<tr>
<td>2/1/2011</td>
<td>294.00</td>
<td>321.30</td>
<td>-27.30</td>
</tr>
<tr>
<td>2/24/2011</td>
<td>294.00</td>
<td>318.4</td>
<td>-24.40</td>
</tr>
<tr>
<td>3/1/2011</td>
<td>294.00</td>
<td>317.70</td>
<td>-23.70</td>
</tr>
</tbody>
</table>

Watermaster Well 108 Paralta Test

State Well No.: 15S01E14Ra
Owner: MPWMD
Screen: 430 - 800

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2010</td>
<td>330.72</td>
<td>341.58</td>
<td>-10.86</td>
</tr>
<tr>
<td>1/27/2011</td>
<td>330.72</td>
<td>334.0</td>
<td>-3.28</td>
</tr>
</tbody>
</table>

Comments:
- Production well on
Watermaster Well 109 Ord Terrace-Shallow

State Well No. 15S01E23Ca Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2010</td>
<td>228.65</td>
<td>263.79</td>
<td>-35.14</td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>228.65</td>
<td>255.78</td>
<td>-27.13</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>228.65</td>
<td>251.53</td>
<td>-22.88</td>
<td></td>
</tr>
</tbody>
</table>

Monitored: Annually
Monitored by: MPWMD

Aquifer: Tsm (upper)

Screen: 280 - 330

Watermaster Well 110 Ord Terrace-Deep

State Well No. 15S01E23Cb Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/2010</td>
<td>228.63</td>
<td>well is obstructed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>228.63</td>
<td>well is obstructed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>228.63</td>
<td>well is obstructed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monitored: Monthly
Monitored by: MPWMD

Aquifer: Tsm (lower)

Screen: 390 - 440

Watermaster Well 111 FO-09-Shallow

State Well No. 15S01E11Pa Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/2010</td>
<td>118.89</td>
<td>133.32</td>
<td>-14.43</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>118.89</td>
<td>112.58</td>
<td>6.31</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>118.89</td>
<td>112.32</td>
<td>6.57</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>118.89</td>
<td>112.03</td>
<td>6.86</td>
<td></td>
</tr>
</tbody>
</table>

Monitored: Monthly
Monitored by: MPWMD

Aquifer: QTc/Tp

Screen: 610 - 650

Watermaster Well 112 FO-09-Deep

State Well No. 15S01E11Pb Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/2010</td>
<td>118.85</td>
<td>140.94</td>
<td>-22.09</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>118.85</td>
<td>139.09</td>
<td>-20.24</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>118.85</td>
<td>135.31</td>
<td>-16.46</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>118.85</td>
<td>130.58</td>
<td>-11.73</td>
<td></td>
</tr>
</tbody>
</table>

Monitored: Monthly
Monitored by: MPWMD

Aquifer: Tsm

Screen: 790 - 830
Watermaster Well 113 FO-10-Shallow

State Well No. 15S01E12Fa **Owner:** MPWMD **Screen:** 620 - 640 **Aquifer:** QTc

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>200.85</td>
<td>203.20</td>
<td>-2.35</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>200.85</td>
<td>202.82</td>
<td>-1.97</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>200.85</td>
<td>203.01</td>
<td>-2.16</td>
<td>Field Book Lost</td>
</tr>
</tbody>
</table>

Watermaster Well 114 FO-10-Deep

State Well No. 15S01E12Fc **Owner:** MPWMD **Screen:** 1380 - 1410 **Aquifer:** Tp

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>201.03</td>
<td>204.50</td>
<td>-3.47</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>201.03</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>201.03</td>
<td>204.50</td>
<td>-3.47</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>3/1/2011</td>
<td>201.03</td>
<td>203.07</td>
<td>-2.04</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 154 Mission Memorial Monitor

State Well No. 15S01E23Aa **Owner:** Mission Memorial Park **Screen:** - **Aquifer:** QTc

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>315.42</td>
<td>339.88</td>
<td>-24.46</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>315.42</td>
<td>335.70</td>
<td>-20.28</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/31/2010</td>
<td>315.42</td>
<td>331.04</td>
<td>-15.62</td>
<td>Field Book Lost</td>
</tr>
</tbody>
</table>
Watermaster Well 163 Playa #4

- **State Well No.** 15S01E22B51
- **Owner:** California American Water
- **Screen:** -
- **Aquifer:** QTc/Tsm
- **Monitored:** Monthly
- **Monitor by:** CAW

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>52.53</td>
<td>62</td>
<td>-9.47</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>52.53</td>
<td>63</td>
<td>-10.47</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>52.53</td>
<td>63</td>
<td>-10.47</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>52.53</td>
<td>65</td>
<td>-12.47</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>52.53</td>
<td>64.0</td>
<td>-11.47</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>52.53</td>
<td>62.0</td>
<td>-9.47</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 231 Del Monte Test

- **State Well No.** 15S01E22Cd
- **Owner:** California American Water
- **Screen:** -
- **Aquifer:** QTc
- **Monitored:** Monthly
- **Monitor by:** CAW

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>32.62</td>
<td>29</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>32.62</td>
<td>29</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>32.62</td>
<td>29</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>32.62</td>
<td>29</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>32.62</td>
<td>29.0</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>32.62</td>
<td>29.0</td>
<td>3.62</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 243 Luxton

- **State Well No.** 15S01E22Ha
- **Owner:** California American Water
- **Screen:** -
- **Aquifer:** QTc
- **Monitored:** Monthly
- **Monitor by:** CAW

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>89.12</td>
<td>94</td>
<td>-4.88</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>89.12</td>
<td>92</td>
<td>-2.88</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>89.12</td>
<td>94</td>
<td>-4.88</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>89.12</td>
<td>92</td>
<td>-2.88</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td>89.12</td>
<td>95.0</td>
<td>-5.88</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td>89.12</td>
<td>96.0</td>
<td>-6.88</td>
<td></td>
</tr>
</tbody>
</table>
Watermaster Well 251 CDM MW-1

State Well No.: 15S01E02Pa
Owner: MPWMD
Monitored by: MPWMD
Screen: -
Aquifer: Qod/Qar

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>93.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>93.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>93.53</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>93.53</td>
<td>89.34</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>93.53</td>
<td>89.22</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>93.53</td>
<td>89.70</td>
<td>3.83</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 252 CDM MW-2

State Well No.: 15S01E15Ga
Owner: MPWMD
Monitored by: MPWMD
Screen: -
Aquifer: Qod/Qar

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>63.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>68.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>68.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>63.83</td>
<td>59.38</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>63.83</td>
<td>59.30</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>63.83</td>
<td>59.78</td>
<td>4.05</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 254 MW-B-22-180

State Well No.: 15S01E12Da
Owner: U.S.A. Fort Ord
Monitored by: MPWMD
Screen: -
Aquifer: Qod/Qar

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>168.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>168.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>168.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>168.1</td>
<td>157.39</td>
<td>10.71</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>168.1</td>
<td>157.35</td>
<td>10.75</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>168.1</td>
<td>156.83</td>
<td>11.27</td>
<td></td>
</tr>
</tbody>
</table>
Watermaster Well 258 MW-B-23-180

- **State Well No.:** 15S01E11Ba
- **Owner:** U.S.A. Fort Ord
- **Screen:** -
- **Aquifer:** Qod/Qar
- **Subarea:** Northern Coastal
- **Well Category:** Monitor

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>113.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>113.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>113.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>113.81</td>
<td>109.68</td>
<td>4.13</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/31/2011</td>
<td>113.81</td>
<td>109.58</td>
<td>4.23</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>113.81</td>
<td>109.64</td>
<td>4.17</td>
<td></td>
</tr>
</tbody>
</table>

Well Category: Monitor Subarea: Northern Inland

Watermaster Well 115 FO-01-Shallow

- **State Well No.:** 15S01E26Ba
- **Owner:** MPWMD
- **Screen:** 310 - 320
- **Aquifer:** QTc
- **Subarea:** Northern Inland

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>362.61</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/5/2011</td>
<td>362.61</td>
<td>202.07</td>
<td>160.54</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 116 FO-01-Deep

- **State Well No.:** 15S01E26Bb
- **Owner:** MPWMD
- **Screen:** 450 - 460
- **Aquifer:** Tm
- **Subarea:** Northern Inland

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>362.57</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/5/2011</td>
<td>362.57</td>
<td>338.98</td>
<td>23.59</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 118 FO-07-Shallow

- **State Well No.:** 15S01E13La
- **Owner:** MPWMD
- **Screen:** 600 - 640
- **Aquifer:** QTc
- **Subarea:** Northern Inland

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>470.19</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>470.19</td>
<td>454.38</td>
<td>15.81</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>470.19</td>
<td>454.32</td>
<td>15.87</td>
<td></td>
</tr>
</tbody>
</table>
Watermaster Well 119 FO-07-Deep

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2010</td>
<td>473.44</td>
<td>489.81</td>
<td>-16.37</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>473.44</td>
<td>487.13</td>
<td>-13.69</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>473.44</td>
<td>481.89</td>
<td>-8.45</td>
<td></td>
</tr>
</tbody>
</table>

State Well No. 15S01E13Lb **Owner:** MPWMD **Screen:** 800 - 840 **Aquifer:** Tsm

Watermaster Well 120 FO-08-Shallow

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2010</td>
<td>378.04</td>
<td>374.18</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>378.04</td>
<td>373.17</td>
<td>4.87</td>
<td></td>
</tr>
</tbody>
</table>

State Well No. 15S01E12Qa **Owner:** MPWMD **Screen:** 740 - 780 **Aquifer:** QTc

Watermaster Well 121 FO-08-Deep

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2010</td>
<td>378.1</td>
<td></td>
<td></td>
<td>inaccessible</td>
</tr>
<tr>
<td>3/2/2011</td>
<td>378.1</td>
<td>389.88</td>
<td>-11.78</td>
<td></td>
</tr>
</tbody>
</table>

State Well No. 15S01E12Qb **Owner:** MPWMD **Screen:** 900 - 940 **Aquifer:** Tsm

Watermaster Well 122 FO-11-Shallow

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>332.93</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>332.93</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>332.93</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>332.93</td>
<td>342.62</td>
<td>-9.69</td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>332.93</td>
<td>342.51</td>
<td>-9.58</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>332.93</td>
<td>342.09</td>
<td>-9.16</td>
<td></td>
</tr>
</tbody>
</table>

State Well No. 15S02E7Ba **Owner:** MPWMD **Screen:** 700 - 730 **Aquifer:** QTc
Watermaster Well 123 FO-11-Deep

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>332.96</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>332.96</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>332.96</td>
<td>330.39</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>332.96</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>2/1/2011</td>
<td>332.96</td>
<td>330.11</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>3/1/2011</td>
<td>332.96</td>
<td>329.90</td>
<td>3.06</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 188 ASR - 1

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>337.23</td>
<td>366.52</td>
<td>-29.29</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 256 ASR - 2

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>354.66</td>
<td>383.25</td>
<td>-28.59</td>
<td></td>
</tr>
</tbody>
</table>

Well Category: Monitor
Subarea: Southern Coastal

Watermaster Well 125 K-Mart

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/29/2010</td>
<td>30.65</td>
<td>23.27</td>
<td>7.38</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>30.65</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/1/2010</td>
<td>30.65</td>
<td>22.24</td>
<td>8.41</td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>30.65</td>
<td>22.71</td>
<td>7.94</td>
<td></td>
</tr>
<tr>
<td>2/1/2011</td>
<td>30.65</td>
<td>22.66</td>
<td>7.99</td>
<td></td>
</tr>
</tbody>
</table>
Watermaster Well 124 Plumas '90 Test
State Well No.: 15S01E27J6 **Owner**: MPWMD
Subarea: Southern Coastal

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>157.83</td>
<td>105.57</td>
<td>52.26</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>157.83</td>
<td>105.57</td>
<td>52.26</td>
<td></td>
</tr>
<tr>
<td>12/30/2010</td>
<td>157.83</td>
<td>105.57</td>
<td>52.26</td>
<td></td>
</tr>
<tr>
<td>12/31/2010</td>
<td>157.83</td>
<td>105.57</td>
<td>52.26</td>
<td></td>
</tr>
<tr>
<td>1/31/2011</td>
<td>157.83</td>
<td>105.57</td>
<td>52.26</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>157.83</td>
<td>105.57</td>
<td>52.26</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 238 CDM MW-4
State Well No.: 15S01E21Ka **Owner**: MPWMD
Subarea: Southern Coastal

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>18.69</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>18.69</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>18.68</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/31/2010</td>
<td>18.69</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>2/1/2011</td>
<td>18.69</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>3/1/2011</td>
<td>18.69</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
</tbody>
</table>

Watermaster Well 239 CDM MW-3
State Well No.: 15S01E22De **Owner**: MPWMD
Subarea: Southern Coastal

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>33.19</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>33.19</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>33.19</td>
<td>14.69</td>
<td>4.00</td>
<td>Field Book Lost</td>
</tr>
</tbody>
</table>
Watermaster Well 240 MW-BW-08-A

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>205.18</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>205.18</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>208.18</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>205.18</td>
<td>58.68</td>
<td>146.50</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/31/2011</td>
<td>205.18</td>
<td>58.68</td>
<td>146.50</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>205.18</td>
<td>58.53</td>
<td>146.65</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Details
- **Monitored by:** MPWMD
- **Aquifer:** Qod/Qar
- **Owner:** U.S.A. Fort Ord
- **Reference Point:** MW-BW-08-A
- **Screen:** -

Watermaster Well 241 MW-BW-09-180

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>206.22</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>11/24/2010</td>
<td>206.22</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>206.22</td>
<td>206.28</td>
<td>-0.06</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>206.22</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/31/2011</td>
<td>206.22</td>
<td>206.52</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>3/2/2011</td>
<td>206.22</td>
<td>206.56</td>
<td>-0.34</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Details
- **Monitored by:** MPWMD
- **Aquifer:** QTc
- **Owner:** U.S.A. Fort Ord
- **Reference Point:** MW-BW-09-180
- **Screen:** -

Watermaster Well 244 Hilby MGT

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2010</td>
<td>248.04</td>
<td>245</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>10/26/2010</td>
<td>248.04</td>
<td>245</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>11/24/2010</td>
<td>248.04</td>
<td>245</td>
<td>3.04</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Details
- **Monitored by:** CAW
- **Aquifer:** QTc
- **Owner:** California American Water
- **Reference Point:** Hilby MGT
- **Screen:** -
<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2010</td>
<td></td>
<td>245</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>1/27/2011</td>
<td></td>
<td>245.0</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>2/24/2011</td>
<td></td>
<td>244.3</td>
<td>3.74</td>
<td></td>
</tr>
</tbody>
</table>

Well Category: Monitor
Subarea: Southern Inland

Watermaster Well 127 FO-03-Deep
State Well No. 15S02E33Ca Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>774.74</td>
<td>637.31</td>
<td>137.43</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/4/2011</td>
<td>774.74</td>
<td>637.31</td>
<td>137.43</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 129 FO-04-Shallow (E)
State Well No. 15S01E26Na Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>168.23</td>
<td>110.76</td>
<td>57.47</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/5/2011</td>
<td>168.23</td>
<td>110.76</td>
<td>57.47</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 130 FO-04-Deep (W)
State Well No. 15S01E26Nb Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>167.44</td>
<td>111.77</td>
<td>55.67</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/5/2011</td>
<td>167.44</td>
<td>111.77</td>
<td>55.67</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 131 FO-05-Shallow
State Well No. 16S02E04Ha Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>478.97</td>
<td>241.82</td>
<td>237.15</td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/3/2011</td>
<td>478.97</td>
<td>241.82</td>
<td>237.15</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 132 FO-05-Deep
State Well No. 16S02E04Hb Owner: MPWMD

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Measured</td>
<td>Reference Point</td>
<td>Depth to Water</td>
<td>Static Water Level</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>10/28/2010</td>
<td>470.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2011</td>
<td>470.13</td>
<td>238.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 133 FO-06-Shallow

State Well No. 16S02E04Fa
Owner: MPWMD

Aquifer: QTc

Screen: 650 - 690

Monitored by: MPWMD

Monitored: Quarterly

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>470.13</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/3/2011</td>
<td>470.13</td>
<td>238.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>229.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2011</td>
<td>229.14</td>
<td>241.49</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 134 FO-06-Deep

State Well No. 16S02E04Fb
Owner: MPWMD

Aquifer: Tsm

Screen: 1050 - 1090

Monitored by: MPWMD

Monitored: Quarterly

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>470.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2011</td>
<td>470.63</td>
<td>241.49</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>240.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/2011</td>
<td>240.28</td>
<td>97.42</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 135 Justin Court (RR M2S)

State Well No. 15S01E35Jb
Owner: California American Water

Aquifer: QTc

Screen: 135 - 155

Monitored by: MPWMD

Monitored: Quarterly

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>240.28</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/4/2011</td>
<td>240.28</td>
<td>97.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>514.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2011</td>
<td>514.39</td>
<td>230.53</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 136 LS Pistol Range (Mo Co TH-1)

State Well No. 15S02E32Ra
Owner: County of Monterey

Aquifer: Tsm

Screen: 430 - 470

Monitored by: MPWMD

Monitored: Quarterly

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>514.39</td>
<td></td>
<td></td>
<td>Field Book Lost</td>
</tr>
<tr>
<td>1/3/2011</td>
<td>514.39</td>
<td>230.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>490.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/2011</td>
<td>490.28</td>
<td>177.09</td>
<td></td>
</tr>
</tbody>
</table>

Watermaster Well 137 York Rd-West (Mo Co MW-1 D)

State Well No. 15S01E36Rb
Owner: County of Monterey

Aquifer: Tsm

Screen: 560 - 600

Monitored by: MPWMD

Monitored: Quarterly

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>490.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/2011</td>
<td>490.28</td>
<td>177.09</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>490.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/2011</td>
<td>490.28</td>
<td>177.09</td>
<td></td>
</tr>
<tr>
<td>Watermaster Well 138</td>
<td>Seca Place (Mo Co MW-2)</td>
<td></td>
<td>Monitored: Quarterly</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>10/28/2010</td>
<td>427.58</td>
<td>255.07</td>
<td>172.51</td>
</tr>
<tr>
<td>1/3/2011</td>
<td>427.58</td>
<td>255.07</td>
<td>172.51</td>
</tr>
</tbody>
</table>

| Watermaster Well 139 | Robley Shallow (North) (Mo Co MW-3S) | | Monitored: Quarterly | | Monitored by: MPWMD | | Aquifer: QTc | | Date Measured | Reference Point | Depth to Water | Static Water Level | Comments |
|---------------------|--------------------------------------|---------------------------------|------------------|-------------------|
| 10/28/2010 | 566.54 | 313.70 | 252.84 | Field Book Lost |
| 1/3/2011 | 566.54 | 313.70 | 252.84 | |

| Watermaster Well 140 | Robley Deep (South) (Mo Co MW-3D) | | Monitored: Quarterly | | Monitored by: MPWMD | | Aquifer: Tsm | | Date Measured | Reference Point | Depth to Water | Static Water Level | Comments |
|---------------------|------------------------------------|---------------------------------|------------------|-------------------|
| 10/28/2010 | 566.44 | 382.03 | 184.41 | Field Book Lost |
| 1/3/2011 | 566.44 | 382.03 | 184.41 | |

| Watermaster Well 141 | LS Driving Range (SCS Deep) | | Monitored: Quarterly | | Monitored by: MPWMD | | Aquifer: QTc | | Date Measured | Reference Point | Depth to Water | Static Water Level | Comments |
|---------------------|-----------------------------|---------------------------------|------------------|-------------------|
| 10/28/2010 | 488.34 | 336.42 | 151.92 | Field Book Lost |
| 1/4/2011 | 488.34 | 336.42 | 151.92 | |

| Watermaster Well 142 | LS No. 1 Subdivision | | Monitored: Quarterly | | Monitored by: MPWMD | | Aquifer: Tsm | | Date Measured | Reference Point | Depth to Water | Static Water Level | Comments |
|---------------------|----------------------|---------------------------------|------------------|-------------------|
| 10/28/2010 | 277.13 | 127.73 | 149.40 | Field Book Lost |
| 1/4/2011 | 277.13 | 127.73 | 149.40 | |

<p>| Watermaster Well 143 | Blue Larkspur-East End | | Monitored: Quarterly | | Monitored by: MPWMD | | Aquifer: | | Date Measured | Reference Point | Depth to Water | Static Water Level | Comments |
|---------------------|------------------------|---------------------------------|------------------|-------------------|</p>
<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2010</td>
<td>226.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/2011</td>
<td>226.43</td>
<td>134.27</td>
<td>92.16</td>
<td></td>
</tr>
</tbody>
</table>

Water Category:

Subarea:

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5/2010</td>
<td>312.12</td>
<td>275</td>
<td>32.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Measured</th>
<th>Reference Point</th>
<th>Depth to Water</th>
<th>Static Water Level</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5/2010</td>
<td>115.15</td>
<td>105</td>
<td>10.15</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3

Selected Hydrographs

Water Year 2011
Monterey Peninsula Water Management District

Watermaster Well Number 101 - MSC-Shallow (15S/1E-15N3)
Screened from 490-680 in the Paso Robles Formation (QTp)
Wellhead Elevation 80.1 MSL
DWR Driller Log No. 338413
Watermaster Well No. 114 - MPWMD FO-10 (Deep) (15S/1E-15Fc)
Screened from 790-830 in the Santa Margarita Formation (Tsm)
Wellhead Elevation 201.03 MSL
DWR Driller Log No. N/A
Datasource: MPWMD
Watermaster Well No. 113 - MPWMD FO-10 (Shallow) (15S/1E-11Fa)
Screened from 480-500 in the Paso Robles (QTp)
Wellhead Elevation 200.85 MSL
DWR Driller Log No. N/A
Datasource: MPWMD
Watermaster Well No. 112 - MPWMD FO-09 (Deep) (15S/1E-15Pb)

Screened from 790-830 in the Santa Margarita Formation (Tsm)
Wellhead Elevation 188.85 MSL
DWR Driller Log No. N/A
Datasource: MPWMD
Watermaster Well No. 111 - MPWMD FO-09 (shallow) (15S/1E-11Pa)

Screened from 610-650 in the Paso Robles (QTp)
Wellhead Elevation 118.89 MSL
DWR Driller Log No. N/A
Datasource: MPWMD
Watermaster Well No. 106 - PCA East (Deep) (15S/1E-15K4)
Screened from 650-700 in the Santa Margarita Formation (Tsm)
Wellhead Elevation 68.54 MSL
DWR Driller Log No. 338402
Datasource: MPWMD
Watermaster Well No. 105 - PCA East (Shallow) (15S/1E-15K5)
Screened from 350-400 in the Paso Robles Formation (QTp)
Wellhead Elevation 68.51 MSL
DWR Driller Log No. 338402
Datasource: MPWMD
Watermaster Well Number 102 - MSC-Deep (15S/1E-15N2)
Screened from 810-850 in the Santa Margarita Formation (Tsm)
Wellhead Elevation 80.29 MSL
DWR Driller Log No. 338425
Datasource: MPWMD
Appendix 4

Watermaster Sentinel Well Hydrographs

Water Year 2011